login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133799
a(2) = 1, a(3)=3; for n >= 4, a(n) = (n-2)!*Stirling_2(n,n-1)/2 = n!/4.
7
1, 3, 6, 30, 180, 1260, 10080, 90720, 907200, 9979200, 119750400, 1556755200, 21794572800, 326918592000, 5230697472000, 88921857024000, 1600593426432000, 30411275102208000, 608225502044160000, 12772735542927360000, 281000181944401920000
OFFSET
2,2
COMMENTS
a(n-1), n>=5, gives the number of necklaces with n beads (C_n symmetry) with color signature determined from the partition 2^2,1^(n-4) of n. Only n-2 distinct colors, say c[1], c[2], ..., c[n-2] are used, and the representative necklaces have the color c[1] and c[2] each twice. E.g., n=5, partition 2,2,1, color signature (take the parts as exponents) c[1]c[1]c[2]c[2]c[3], with the a(4)=6 necklaces (write j for color c[j]) 11223, 11232, 11322, 12213, 12123 and 12132, all taken cyclically. See A212359 for the numbers for general partitions or color signatures. - Wolfdieter Lang, Jun 27 2012
LINKS
FORMULA
a(n) = numerator(n!/(2*(n! - 2))) for n > 2. - Stefano Spezia, Dec 06 2023
MATHEMATICA
Join[{1, 3}, Range[4, 30]!/4] (* Harvey P. Dale, Aug 13 2013 *)
PROG
(PARI) concat([1, 3], vector(66, n, (n+3)!/4)) \\ Joerg Arndt, Aug 14 2013
(Magma) [n le 3 select 2*n-3 else Factorial(n)/4: n in [2..30]]; // G. C. Greubel, Sep 28 2024
(SageMath)
def A133799(n): return (factorial(n) +2*int(n==2) +6*int(n==3))//4
[A133799(n) for n in range(2, 31)] # G. C. Greubel, Sep 28 2024
CROSSREFS
A diagonal of triangle A133800.
Cf. A212359.
Sequence in context: A318431 A157534 A372024 * A347925 A262022 A088436
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 17 2008
EXTENSIONS
Corrected parameters in definition. - Geoffrey Critzer, Apr 26 2009
STATUS
approved