login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372024
Expansion of ( (1 + 8*x)/(1 - x) )^(1/3).
2
1, 3, -6, 30, -159, 939, -5856, 37992, -253590, 1729758, -12001524, 84422244, -600613998, 4313760870, -31233564312, 227721316008, -1670358339735, 12317389232475, -91256834358510, 678934503248070, -5070123478493727, 37990712430826059, -285540106663543128
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} 9^k * binomial(1/3,k) * binomial(n-1,n-k).
a(n) ~ (-1)^(n+1) * 2^(3*n) * Gamma(1/3) / (Pi * 3^(7/6) * n^(4/3)). - Vaclav Kotesovec, Apr 16 2024
D-finite with recurrence n*a(n) +(7*n-10)*a(n-1) +8*(-n+2)*a(n-2)=0. - R. J. Mathar, Apr 22 2024
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(((1+8*x)/(1-x))^(1/3))
(PARI) a(n) = sum(k=0, n, 9^k*binomial(1/3, k)*binomial(n-1, n-k));
CROSSREFS
Cf. A372023.
Sequence in context: A265376 A318431 A157534 * A133799 A347925 A262022
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 16 2024
STATUS
approved