

A162995


A scaled version of triangle A162990.


5



1, 3, 1, 12, 4, 1, 60, 20, 5, 1, 360, 120, 30, 6, 1, 2520, 840, 210, 42, 7, 1, 20160, 6720, 1680, 336, 56, 8, 1, 181440, 60480, 15120, 3024, 504, 72, 9, 1, 1814400, 604800, 151200, 30240, 5040, 720, 90, 10, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

We get this scaled version of triangle A162990 by dividing the coefficients in the left hand columns by their 'topvalues' and then taking the square root.
T(n,k) = A173333(n+1,k+1), 1 <= k <= n.  Reinhard Zumkeller, Feb 19 2010
T(n,k) = A094587(n+1,k+1), 1 <= k <= n.  Reinhard Zumkeller, Jul 05 2012


LINKS

Reinhard Zumkeller, Rows n = 1..150 of triangle, flattened


FORMULA

a(n,m) = (n+1)!/(m+1)! for n = 1, 2, 3, ..., and m = 1, 2, ..., n.


EXAMPLE

The first few rows of the triangle are:
[1]
[3, 1]
[12, 4, 1]
[60, 20, 5, 1]


MAPLE

a := proc(n, m): (n+1)!/(m+1)! end: seq(seq(a(n, m), m=1..n), n=1..9); # Johannes W. Meijer, revised Nov 23 2012


PROG

(Haskell)
a162995 n k = a162995_tabl !! (n1) !! (k1)
a162995_row n = a162995_tabl !! (n1)
a162995_tabl = map fst $ iterate f ([1], 3)
where f (row, i) = (map (* i) row ++ [1], i + 1)
 Reinhard Zumkeller, Jul 04 2012


CROSSREFS

Cf. A094587.
A056542(n) equals the row sums for n>=1.
A001710, A001715, A001720, A001725, A001730, A049388, A049389, A049398, A051431 are related to the left hand columns.
A000012, A009056, A002378, A007531, A052762, A052787, A053625 and A159083 are related to the right hand columns.
Sequence in context: A287462 A287985 A117375 * A177020 A226167 A185105
Adjacent sequences: A162992 A162993 A162994 * A162996 A162997 A162998


KEYWORD

easy,nonn,tabl


AUTHOR

Johannes W. Meijer, Jul 27 2009


STATUS

approved



