login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159083
Products of 7 consecutive integers.
5
0, 0, 0, 0, 0, 0, 0, 5040, 40320, 181440, 604800, 1663200, 3991680, 8648640, 17297280, 32432400, 57657600, 98017920, 160392960, 253955520, 390700800, 586051200, 859541760, 1235591280, 1744364160, 2422728000, 3315312000, 4475671200, 5967561600, 7866331200
OFFSET
0,8
LINKS
Michael De Vlieger and Harvey P. Dale, Table of n, a(n) for n = 0..10000 (first 1000 terms by Harvey P. Dale.)
FORMULA
E.g.f.: x^7*exp(x).
For n>=8: a(n) = A173333(n,n-7). - Reinhard Zumkeller, Feb 19 2010
G.f.: 5040*x^7/(1-x)^8. - Colin Barker, Mar 27 2012
From Amiram Eldar, Mar 08 2022: (Start)
a(n) = n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)*(n-6) = n!/(n-7)!.
Sum_{n>=7} 1/a(n) = 1/4320.
Sum_{n>=7} (-1)^(n+1)/a(n) = 4*log(2)/45 - 1327/21600. (End)
MAPLE
G(x):=x^7*exp(x): f[0]:=G(x): for n from 1 to 36 do f[n]:=diff(f[n-1], x) od: x:=0: seq(f[n], n=0..33);
MATHEMATICA
Table[Times@@(n+Range[0, 6]), {n, -6, 25}] (* or *) LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {0, 0, 0, 0, 0, 0, 0, 5040}, 30] (* Harvey P. Dale, Apr 07 2018 *)
PROG
(PARI) my(x='x+O('x^30)); concat([0, 0, 0, 0, 0, 0, 0], Vec(5040*x^7/(1-x)^8)) \\ G. C. Greubel, Jun 28 2018
(Magma) I:=[0, 0, 0, 0, 0, 0, 0, 5040]; [n le 8 select I[n] else 8*Self(n-1) - 28*Self(n-2) +56*Self(n-3) -70*Self(n-4) +56*Self(n-5) -28*Self(n-6) +8*Self(n-7) -Self(n-8): n in [1..30]]; // G. C. Greubel, Jun 28 2018
CROSSREFS
Equals A008279(n,7) (for n>=7).
Sequence in context: A321843 A226886 A284204 * A179731 A061140 A061122
KEYWORD
nonn,easy
AUTHOR
Zerinvary Lajos, Apr 05 2009
STATUS
approved