login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008279
Triangle T(n,k) = n!/(n-k)! (0 <= k <= n) read by rows, giving number of permutations of n things k at a time.
117
1, 1, 1, 1, 2, 2, 1, 3, 6, 6, 1, 4, 12, 24, 24, 1, 5, 20, 60, 120, 120, 1, 6, 30, 120, 360, 720, 720, 1, 7, 42, 210, 840, 2520, 5040, 5040, 1, 8, 56, 336, 1680, 6720, 20160, 40320, 40320, 1, 9, 72, 504, 3024, 15120, 60480, 181440, 362880, 362880
OFFSET
0,5
COMMENTS
Also called permutation coefficients.
Also falling factorials triangle A068424 with column a(n,0)=1 and row a(0,1)=1 otherwise a(0,k)=0, added. - Wolfdieter Lang, Nov 07 2003
The higher-order exponential integrals E(x,m,n) are defined in A163931; for information about the asymptotic expansion of E(x,m=1,n) see A130534. The asymptotic expansions for n = 1, 2, 3, 4, ..., lead to the right hand columns of the triangle given above. - Johannes W. Meijer, Oct 16 2009
The number of injective functions from a set of size k to a set of size n. - Dennis P. Walsh, Feb 10 2011
The number of functions f from {1,2,...,k} to {1,2,...,n} that satisfy f(x) >= x for all x in {1,2,...,k}. - Dennis P. Walsh, Apr 20 2011
T(n,k) = A181511(n,k) for k=1..n-1. - Reinhard Zumkeller, Nov 18 2012
The e.g.f.s enumerating the faces of the permutohedra / permutahedra, Perm(s,t;x) = [e^(sx)-1]/[s-t(e^(sx)-1)], (cf. A090582 and A019538) and the stellahedra / stellohedra, St(s,t;x) = [s e^((s+t)x)]/[s-t(e^(sx)-1)], (cf. A248727) given in Toric Topology satisfy exp[u*d/dt] St(s,t;x) = St(s,u+t;x) = [e^(ux)/(1-u*Perm(s,t;x))]*St(s,t;x), where e^(ux)/(1-uy) is a bivariate e.g.f. for the row polynomials of this entry and A094587. Equivalently, d/dt St = (x+Perm)*St and d/dt Perm = Perm^2, or d/dt log(St) = x + Perm and d/dt log(Perm) = Perm. - Tom Copeland, Nov 14 2016
T(n, k)/n! are the coefficients of the n-th exponential Taylor polynomial, or truncated exponentials, which was proved to be irreducible by Schur. See Coleman link. - Michel Marcus, Feb 24 2020
REFERENCES
CRC Standard Mathematical Tables and Formulae, 30th ed., 1996, p. 176; 31st ed., p. 215, Section 3.3.11.1.
Maple V Reference Manual, p. 490, numbperm(n,k).
LINKS
J. Fernando Barbero G., Jesús Salas, Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013-2014.
V. Buchstaber and T. Panov Toric Topology, arXiv:1210.2368v3 [math.AT], 2014.
R. F. Coleman, On the Galois groups of the exponential Taylor polynomials, L’Enseignement Mathématique 33, 183-189, (1987).
J. Goldman, J. Haglund, Generalized rook polynomials, J. Combin. Theory A91 (2000), 509-530, 2-rook coefficients for k rooks on the 1xn board, all heights 1.
R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley, 1994.
Germain Kreweras, Une dualité élémentaire souvent utile dans les problèmes combinatoires, Mathématiques et Sciences Humaines 3 (1963) 31-41.
Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Annotated, scanned copy]
OEIS Wiki, Sorting numbers
Yuriy Shablya, Dmitry Kruchinin, Euler-Catalan's Number Triangle and its Application, Proceedings Book of Micropam (The Mediterranean International Conference of Pure & Applied Mathematics and Related Areas 2018), 212-215.
Eric Weisstein's World of Mathematics, Falling Factorial
FORMULA
E.g.f.: Sum T(n,k) x^n/n! y^k = exp(x)/(1-x*y). - Vladeta Jovovic, Aug 19 2002
Equals A007318 * A136572. - Gary W. Adamson, Jan 07 2008
T(n, k) = n*T(n-1, k-1) = k*T(n-1, k-1)+T(n-1, k) = n*T(n-1, k)/(n-k) = (n-k+1)*T(n, k-1). - Henry Bottomley, Mar 29 2001
T(n, k) = n!/(n-k)! if n >= k >= 0, otherwise 0.
G.f. for k-th column k!*x^k/(1-x)^(k+1), k >= 0.
E.g.f. for n-th row (1+x)^n, n >= 0.
Sum T(n, k)x^k = permanent of n X n matrix a_ij = (x+1 if i=j, x otherwise). - Michael Somos, Mar 05 2004
Ramanujan psi_1(k, x) polynomials evaluated at n+1. - Ralf Stephan, Apr 16 2004
E.g.f.: Sum T(n,k) x^n/n! y^k/k! = e^{x+xy}. - Franklin T. Adams-Watters, Feb 07 2006
The triangle is the binomial transform of an infinite matrix with (1, 1, 2, 6, 24, ...) in the main diagonal and the rest zeros. - Gary W. Adamson, Nov 20 2006
G.f.: 1/(1-x-xy/(1-xy/(1-x-2xy/(1-2xy/(1-x-3xy/(1-3xy/(1-x-4xy/(1-4xy/(1-... (continued fraction). - Paul Barry, Feb 11 2009
T(n,k) = Sum_{j=0..k} binomial(k,j)*T(x,j)*T(y,k-j) for x+y = n. - Dennis P. Walsh, Feb 10 2011
From Dennis P. Walsh, Apr 20 2011: (Start)
E.g.f (with k fixed): x^k*exp(x).
G.f. (with k fixed): k!*x^k/(1-x)^(k+1). (End)
For n >= 2 and m >= 2, Sum_{k=0..m-2} S2(n, k+2)*T(m-2, k) = Sum_{p=0..n-2} m^p. S2(n,k) are the Stirling numbers of the second kind A008277. - Tony Foster III, Jul 23 2019
EXAMPLE
Triangle begins:
1;
1, 1;
1, 2, 2;
1, 3, 6, 6;
1, 4, 12, 24, 24;
1, 5, 20, 60, 120, 120;
1, 6, 30, 120, 360, 720, 720;
1, 7, 42, 210, 840, 2520, 5040, 5040;
1, 8, 56, 336, 1680, 6720, 20160, 40320, 40320;
1, 9, 72, 504, 3024, 15120, 60480, 181440, 362880, 362880;
1, 10, 90, 720, 5040, 30240, 151200, 604800, 1814400, 3628800, 3628800;
...
For example, T(4,2)=12 since there are 12 injective functions f:{1,2}->{1,2,3,4}. There are 4 choices for f(1) and then, since f is injective, 3 remaining choices for f(2), giving us 12 ways to construct an injective function. - Dennis P. Walsh, Feb 10 2011
For example, T(5,3)=60 since there are 60 functions f:{1,2,3}->{1,2,3,4,5} with f(x) >= x. There are 5 choices for f(1), 4 choices for f(2), and 3 choices for f(3), giving us 60 ways to construct such a function. - Dennis P. Walsh, Apr 30 2011
MAPLE
with(combstruct): for n from 0 to 10 do seq(count(Permutation(n), size=m), m = 0 .. n) od; # Zerinvary Lajos, Dec 16 2007
seq(seq(n!/(n-k)!, k=0..n), n=0..10); # Dennis P. Walsh, Apr 20 2011
seq(print(seq(pochhammer(n-k+1, k), k=0..n)), n=0..6); # Peter Luschny, Mar 26 2015
MATHEMATICA
Table[CoefficientList[Series[(1 + x)^m, {x, 0, 20}], x]* Table[n!, {n, 0, m}], {m, 0, 10}] // Grid - Geoffrey Critzer, Mar 16 2010
Table[ Pochhammer[n - k + 1, k], {n, 0, 9}, {k, 0, n}] // Flatten (* or *)
Table[ FactorialPower[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 18 2013, updated Jan 28 2016 *)
PROG
(PARI) {T(n, k) = if( k<0 || k>n, 0, n!/(n-k)!)}; /* Michael Somos, Nov 14 2002 */
(PARI) {T(n, k) = my(A, p); if( k<0 || k>n, 0, if( n==0, 1, A = matrix(n, n, i, j, x + (i==j)); polcoeff( sum(i=1, n!, if( p = numtoperm(n, i), prod(j=1, n, A[j, p[j]]))), k)))}; /* Michael Somos, Mar 05 2004 */
(Haskell)
a008279 n k = a008279_tabl !! n !! k
a008279_row n = a008279_tabl !! n
a008279_tabl = iterate f [1] where
f xs = zipWith (+) ([0] ++ zipWith (*) xs [1..]) (xs ++ [0])
-- Reinhard Zumkeller, Dec 15 2013, Nov 18 2012
(Sage)
for n in range(8): [falling_factorial(n, k) for k in (0..n)] # Peter Luschny, Mar 26 2015
(Magma) /* As triangle */ [[Factorial(n)/Factorial(n-k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Oct 11 2015
(Python)
from math import factorial, isqrt, comb
def A008279(n): return factorial(a:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)))//factorial(a-n+comb(a+1, 2)) # Chai Wah Wu, Nov 13 2024
CROSSREFS
Row sums give A000522.
T(n,0)=A000012, T(n,1)=A000027, T(n+1,2)=A002378, T(n,3)=A007531, T(n,4)=A052762, and T(n,n)=A000142.
Sequence in context: A082037 A163649 A110858 * A239572 A056043 A187005
KEYWORD
nonn,tabl,nice,easy,core
STATUS
approved