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SORTING NUMBERS FOR CYLINDERS AND
" OTHER CLASSIFICATION NUMBERS .,

» [6 /=
THEODORE S. MOTZKIN®

0. Introduction. Set partitions (corresponding to equivalence relations) are in
the following called sortings. Catalan [3, pp. 22-23] expressed in 1865 Stirling num-
bers of the second kind and their sums (now also called Bell-Stirling numbers) as
numbers (i.e., cardinals of sets) of sortings. The umbral generating function of
these sums, namely e®*~%, and its coefficients were mentioned in a different context
by Boole [2, pp. 27, 245] in 1860. (For further references see [4] and [10].)

When of all sortings obtained from each other by a permutation of the sorted set
S only one is courted then the sorting numbers become (arithmetical) partition
numbers. As an interinediate step one can use only those permutations that belong
to a given subgroup G of the symmetric group on S. We study the two cases where
S'is a direct prodiict S,S, and G is induced either by the powers of a cyclic permuta-
tion of one factor S, or by the symmietric group of S,. In the first case it is natural
to call the structure (S, G) a cylinder.

Together with sortings we consider similar structures where the sets are replaced
by lists (indexed sets), and othér classifications. These are structures—i.e., sets (or
lists) of sets (or lists) of sets (or lists) etc. (finitely many times) of elements which
pave a set S, that is, cover and pack S. A structure 7 covers S if every element of S
occurs at least once in T'; while if every element of S occurs ar most once, and if no
¢lement outside § occuts, then 7 is a packing (the lists are nonrepetitive and the
lists and sets are disjoint).

Mmbers of structures so defined we obtain in §§4-7 recurrences, generating

f‘unctions&_éiﬁéﬁ?ﬁﬁt‘gfgﬁ'g@*@gg properties. Many of these results (even for

ordinary sorting numbers) are new. Some proofs are omitted or condensed. §§1-3
help systématize the notation.

I. Mappings. Let L, M, N be finite, possibly empty sets, with cardinals
\L| =1 |M|=m, [N|=n. Let
MN be the direct prodiict of M and N, _
L the set of mappings from N into L (N-lists in L), including as subsets
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168 T. S. MOTZKIN

N NN
L< 5 L. L_ % (in-valence <1 on L) the set of injections (N-ads in L),
2y = . ,
LY the set of surjections (N-lists on L)@
Ml LY the set of bijections,
M! = MM the set of permutations of M.
In analogy to |MN|=mn, |[L¥|=I", |M!|=m!we define
pooieal, mo= = (G
n

and similarly in the sequel. Since

In =0 forl>n and In =0 forn>|

the sums

l

Z n and i I
n=0
are finite; such sums will be ab“eviated to y
St and I3,
and their largest terms to
max?® and [mex = 1,

Deemphasizing the individuality of N, the sets LY, LN, LY, LY can be regarded as
sets of lists of elements of L (n-lists in L, n-adg in L, etc.) and denoted L*, L, L%,

2. Symmetric merging and subgroupwise merging. If we merge (identify, collect
into equivalence classes) those mappings that are obtained from each other by a
permutation of N we replace, in the above notations, N by !N and n by !n;
similarly for L. 0

The set L', also dengted (%), is the set of sets of n elements of L (n-sets in L), and
L' is the set of n-tug&-in L (the sum of the ““multiplicities” of the elements is n).
We have

n

i — (I+n—1)’ I

== (7:11)’ I2 =8,

and the largest term of /'Z=2"is I'?**= (uf2)-
If, for merging of mappings, we use a subgroup G of N'! we replace, in the
< notations, ! N by 6N, !n by °n. If G is the group Ney generated by a cyclic permuta-
> tion of N we write ®N for ¢N and “n for %n.
If only those mappings are admitted that are invariant under (every member of)
— G we write ¢N and %n.

-%'MM)M s allburd
l\~ s wodaad ae
DIN- ad ilh-h,-.l(fq\’)‘w Y
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3. Classifications. Deemphasizing the individuality ofl_ L, the set LY becomes
1%, the set of listed sortings of N into / nonempty disjoint%:iafsses. While its members
are l-ads of sets, those of !/¥ are Lsets of sets, namely sortings of N. We have

e =1,

% is the Stirling number of second kind for nand /.

The members of /'Y and /¥ are respectively sets of cardinals and lists of car-
dinals, namely partitions of n and listed partitions (compositions) of » into / nonzero
terms, and correspond to the isomorphism classes of sortings and listed sortings.
For results on the “cyclic” compositions or partitions /% and related concepts
see [9].

Summing over A=0, ..., / we have

| Jin — 1)\!n 1jn — 1 n

1 E, DY) AZ; DL
For A>n the terms are 0; the sums become, for />n, independent of / and will be
denoted by

T(n): In — 'ZL" and In = '27;, = ?@”{w)

respectively the partition number and the sorting number (Bell-Stirling number)
of n. Their largest terms are

b !max'® and !max®.

The set I5* of [-ads of nonempty disjoint ads exhausting N and the set 1/¥+ of
l-sets of such ads cannot be obtained from L¥ by subset formation and merging.
If we admit empty ads we omit the > sign; again we have

1+ — Z L It — Z At

ALl Asi
and denote !/"*, /> n, and its largest term by

It = |3+ and Imax®*.

=["n! rfollows forn>1

2 St = Sy nl=20"nl,

n+ In — n—1 ) 1
maxi* = max? n! ([(n—l)/2] n!.
If every class of a sorting of N is divided into subclasses, we have an example of
a 3-level classification of N (levels 0, 1, 2, 3 are the elements, subclasses, classes and
the union or set of the classes). The members of 2N*, SN, N+ ¥ are various kinds
of 2-level classifications of N; N itself and its permutations are 1-level classifications.
A classification is setwise if it is obtained only by set formation, e.g., a sorting.
" A classification of N is proper if a class with only one subclass can only have one
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170 T. S. MOTZKIN

subsubclass, and if, for n>1, not every 1-level class has only one element. The
number of proper setwise classifications of N is finite and will be denoted by A,.

4. Sortings of a product. Among numbers connected with mappings from a
product MN we mention

(1) !Ilm-n’ !lcym.n, !l_lm.n’ !lﬂm.n-
For I>mn they are independent of / and can be denoted by

{imen 1¥m-n tim-n 1¥m-n
! , ! y ! , ! .

Some of these latter combinatorial functions arise in the study of the number of
identities in semigroups.
For m= 1 the numbers in (1) become !/". For m=2still M'!= M., and

1P2n = J(1En g 1),

For m >3, each class in a member of 1MV is easily seen to be either MNy, Ny=N,
or {u}Na, p € M, No< N, and in the latter case the N, are the same for all p € M.
Thus the number of sortings does not depend on m, and

== S (”) 1AL 1= ).
Aslvsn 4

By summation over / we obtain

pmn o= thn — Z (”) v -y,
vV,

vsn

For prime m, each class in a member of 1M N ig easily seen to be either
MN,, N, © N,
or a member of
MP¥a, Ny € N,
and in the latter case its cyclic transforms pave MN,.

5. Recurrences. From the combinatorial definitions one obtains easily

Bl o e ! w21, E, - 4E 4
Voo e 3) 258 = (1+35)" 31, Mo

Bell nos

w-r

(4) el = (1 + 1y, n>0, W
) D = (1 4 1), n=0,

(6) "ot D) — (] 4 19PN (p 4 |EP )R n>0, p prime,

n—1
@ s =2, (W)aoshvrs—nhihe, nz1,
0 v
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where ! is the vicarious exponentiation recipient; e.g., (I1+!2=14211412
(Compare also b,=(1+b))", n>2, for the Bernoulli numbers.)
From the recurrence

I+ H+ En: (n)(y+1)1 n-w+
v,

0

and the same expansion for !"* we deduce

n
DT g It = I S (e 1) (00
1
and then similarly
(!(n+1)+__(n+1) !n+)_n(!n+_n !(n-1)+) =n !(n—1)+;

hence the simpler recurrence

6. Generating functions. The umbral (exponential) generating functions
2y w= z nZz'n! = ¢%/(1-z), lz] <1, (I-2w' = 2-2)w,

(G) w=23Siznl=1/2-e?), |z <log2, w = 2wi—w,

@)y w= z "z%n! = -1, |z| < oo, W= e*w, w'w = w'(w +w),

5) W= Z Wnznipl = ge*-1 |z| < o, w' = 2e*w, w'w = w'(w +w),
w = Z 1Epnznipl = gef -1+ (P -1p |z| < oo,

© . _

W= w(e*+e”), (W2+pw'w—w'w)l = (p—1)> "} (w'w—w?— ww)w?? -2
” 7

WiWE = 3w'w'w+(p+ )w'w? = 2w — (p+ 1)w'>w — pw'w?,

"= D haz'nl,  z=2w—l-e*"1 7| < logd—1,
3w = 2w'w+l,

®) w= Z "*zhn! = o0 -2, |z] < 1, (1—-2)*w = w,

are obtained from the corresponding recurrences, via the first-order differential
equations with initial value w(0) = 1.
Formula (6") defines w for every complex p. In particular,

W = eez—1+z — (eez_l)l — Z !n+lzn/n! fOI‘p — 0,
w—>e“"1 forp— —cand Rez > 0.

The coefficients of w are polynomials in p (see §7) and are, for n>0, smaller than
12" when p is composite.
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It can be hcftwn that if an umbral series w generates the numbers of classifications
of a certainl level, then those of the next higher level are generated by e”~* if the
new classi casions consist of sets of old ones, and by 1/(2—w) if they consist of
lists (ads), !

7. Valjies. f The relative size of numbers of lists or sets is apparent from the
following table where packing is, but covering is not assumed.
|

3 4 5 For further values or references see
16 65 326 [11]
6 24 120 [1, pp.272-273]; [11]
sets {n Zopn 8 16 32 see below
plmex= (. 3 6 10 see below
For level 2: numbers of lists (or sets) of lists (or sets or numbers) we reassume covering, and
obtain by inspection (i.e., without machines) and use of recurrences

elements v n 0
an (from (2))

€ules “'_ll'\-«f‘( 1
n'max—p! 1
1
1

lists

_ R = N =
[SEE N SRV I )

For further values or

n 0123 4 5 6 7 8 9 references see
Lats o [T =2aL 114 24 1921920 23040 322560 5160960 92897280— 24/ f,
= 1sts o maxi*t = 11212 72 720 7200 100800 1411200 24501600 5 ¢ <
lists SN 25
(=920 ! |
LA ISze—t+ 11313 73 501 4051 37633 394353 4596553 [11]
(oW 5 | sets of (from (8))
VR lists om
G aate™ Imaxi* 112 36 240 1800 15120 141120 1693440
R *._.* <t listsof (3% (from (3) 11313 75 541 4683 47293 595835 7088261 [11] J
[ s sets max? 112 36 240 1800 16800 191520 2328480 :
ec“ Hof sets of 5 =1 112 5 15 52 203 877 4140 21147 **; [11]
( L € fl wo. sets (from (4))
- ’:‘ k>, 4o !max?% 111 3 7 25 90 350 1701 7770 ***; [1, p. 835]
In_9n-1 .
) It lists of ZZX—Inz— 112 4 8 16 32 64 128 256 [[lli]pp. 24-441];
numbers >
(@=ha) 1112 3 6 10 20 35 70 {1, pp. 828-8301;
[11, 126 20]
R ISin={n )
@q,. tibhaa cets of [1Z"=" 1123 5 71 11 15 22 30 [[i,l?p. 836-8391;
numbers |y axly 1111 2 2 3 4 5 6*
* continued 9 11 15 18 23 30 37 47 58 71 90.
**x The values of !* for n<51 are given in [8]. I have the values for n <200,
obtained (with help from D. Cantor and A. Fraenkel), in 16 sec., by the IBM
360/91 at the UCLA Computing Facility. We give here 4 values to 8 figures:
150 = 18572426 ... -10%¢,
1100 — 47585391 ... 108,
1180 — 68206412... 1093,
1200 — 62474847 ... - 10778,
By [8], " is asymptotic to
whl exp (((log v)® —log v+ 1)v—3}log log v—1) = v"e*~""*/Vlogn X
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where v log v=n. A better approximation seems to be

-1/2
Pn = Vnev—n—l(g_!_l) (1_

n(2n%+Tnv+ 101/2))
&n+vE )
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given in [8] without error term or indication of the way in which it might be
superior to other asymptotic expressions. Setting 1" =pu,(1 — A,/n) we find

'\50 =
’\100 =
’\150 =
/\200 =

.0015. ..,
.0008.. .,
.0006.. .,
0004 . ...

*** By [7], p. 413 last line (at whose end an exponent 1/2 should be appended)
and p. 412, line 17 (both only with hints to proofs), !max?% is asymptotic to

exp (((log v)*—log v+ 1)v—4log v— 1 —4log 27) = v*~112ev=7~1/4/27,

Similarly we obtain these numbers of certain sets of subsets of direct products:

n 0

e 1
{ Imaxi® 1
iz 1
{ !maxi?® 1
1

!Ela-n
ImaxZe" |

1

NN =N NN

2

H oo W AN

3
22
12
31
10
42
24

4

94

48
164

53
268 1
128

5
454
200
999
265
994
880

6
2430
1040
6841
1700

16852
7440

7
14214
5600
51790

8

89918
33600 s~

428131 3929021 <w

For prime p, !57" is a polynomial in p of degree n—1 (for n>0). The sequence of
these polynomials starts

1
2
5+p

15+ 6p+p?
52430p+11p2+p°
203 + 150p + 80p2 + 20p° + p*
877 +780p+ 525p% + 190p° + 37p* + p°

Finally, for classifications of unbounded level we find

h, 1

1

1

4

26 236

2752

39208

For further values or
references see

[11]

ol
9 ¥
GS3
=~ Valu, iJ'I?cU.;'Jf'J
S/
¢ W
. | 2 | ;.,
'f:j‘. jk
I/ % leGg
C . ioloy

8. Congruence properties. While the linear recurrence (4) for !" is not of
bounded degree, !" mod a prime p fulfills the linear recurrence

©®)

nt+p — !n+!n+1

»

(T) Czd‘wrg_uturx \f' el o
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of degree p and with constant coefficients [6]. A combinatorial proof of (9) is the,
by far simplest, case t=1 of the proof of (10).
From (9) follows, first letting n=0, then using (4) for n=p—1,

p—-1
=2, —)E =2,

The recurrence (9) holds also for «* if «? =a+ 1. In the field GF(p?), the charac-
teristic polynomial g(x)=x?—x—1 has p roots o;=a,+k, no proper subset of
which has its sum in the prime field GF(p), over which g(x) is therefore irre-
ducible. The of are the p fundamental solutions of (9); the linear combination that
represents ! can be shown to be

b
P =D fleaded, () =x"— D v
r 0
Since af’ =« +j we have o =1 where

pl=14p+ - +pt = (PP =D/(p—1);
hence
Inte’ = In
P
It is unknown where ! mod p can have a smaller period. The prime decompositions
of the first values of p’ are, according to J. L. Selfridge,

2 3
3 13
5 11-71
7 29-4733
11 15797-1806113
13 53-264031-1803647
17 10949-1749233.2699538733

For " mod p*, t>1, we prove the linear recurrence

. pt=1 pt-t
(10) et =S s (7))
ot ‘G J

of degree p' with constant coefficients; sx(x) denotes the sorting polynomial
S 1(A—k)A x*. Indeed consider the set N+ P, |P|=p (4 means disjoint union) and
a cyclic permutation 7 of P*, acting indirectly on an arbitrary sorting o of N+ P*.
The list

t
o,a7,...,0m" "1

has no repetitions unless o7 =0 where #=1?'"1. If o# =0 then, for each element =
of P, either

(11) w,md, ..., mFPTL
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belong to the same class in o (case I) or they belong to p different classes (case II);
the latter contain no element of N nor any case I-element. Finally it is easily seen
that the number of sortings of N+ P*for which exactly j of the p-sets (11) belong to
case I (j=0,...,p' 1) is

(-1
s (7)) e,

Hes e (10)

For j+#,0 we have (*'; ")=,¢-10, hence s,:-1_,(p) in (10) can then be replaced by
its constant coefficient 1. For j=,0, #,20 we have (*'; ")=-20, but

t-1_ s

Spt=1_4(p) i (p 5 j)p+1 = 14+07-2.2 (unless p=t=j=2),

where 0°=1; thus s,t-1_,(p) in (10) can be replaced by 1+07-2.2. There follows
in particular

2 > P
49t = B AR R N L

p Z(])
For p>2 this can be written

1m+p2 1+
Intp pz(1+. ».

A more detailed analysis shows that for every r>1 and prime p > 2 we have

(12) ot = (14 ntlypto?,
pt

Setting n=0 we obtain

Pt = oot
pt

The characteristic polynomial of the recurrence (10) is

t—1
X7 — Zsp'-i-y(p)(pj )x’-
For p+#2 we can replace it by
xP = (x+ 1)1

For t=2, p=2 the characteristic polynomial is x*—x2—2x—3.
A similar (and simpler) proof than that of (10) shows that

!ﬂz-(n+p) = (2_0p—2) !Exz~n+ !212-(1:+1)_

For p>2 the corresponding polynomial is x? —x—2=, 2¢(x/2), and p’ is again a
period.
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It follows from the fact that the highest and lowest coefficients of the recurrence
(10) are #,0 that ! is periodic, without preperiod, for p* and hence for every modu-
lus m, and that the period is <m®*, where p is the largest prime power dividing m.
The periodicity, with possible preperiods, follows also from (4') and Fujiwara’s
theorem [5] on the umbral coefficients (if integer) of solutions w=> az"/n! of
algebraic differential equations

F(z,w,w', ..., w9 =0
with integer coefficients for which

oF
W(O, o, al, “eey ad) = 1.

By the same theorem, modular periodicity holds also for the coefficients

n%, S, Wmoogeenopon
in (2'), 3), (5", (67, (7'), (8).
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