login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181511
Triangle T(n,k) = n!/(n-k)! read by rows, 0 <= k < n.
4
1, 1, 2, 1, 3, 6, 1, 4, 12, 24, 1, 5, 20, 60, 120, 1, 6, 30, 120, 360, 720, 1, 7, 42, 210, 840, 2520, 5040, 1, 8, 56, 336, 1680, 6720, 20160, 40320, 1, 9, 72, 504, 3024, 15120, 60480, 181440, 362880, 1, 10, 90, 720, 5040, 30240, 151200, 604800, 1814400, 3628800
OFFSET
1,3
COMMENTS
Row n contains the same set of values as row A181512(n,.), which are related to labeled rooted trees (A000169) and Bell numbers (A000110) respectively.
LINKS
FORMULA
T(n,k) = A008279(n,k). - R. J. Mathar, Mar 03 2011
EXAMPLE
The triangle begins:
1;
1, 2;
1, 3, 6;
1, 4, 12, 24;
which is A181512 without duplicates.
MAPLE
A181511 := proc(n, k) n!/(n-k)! ; end proc:
seq(seq(A181511(n, k), k=0..n-1), n=1..16) ; # R. J. Mathar, Mar 03 2011
PROG
(Haskell)
a181511 n k = a181511_tabl !! (n-1) !! k
a181511_row n = a181511_tabl !! (n-1)
a181511_tabl = tail $ map init a008279_tabl
-- Reinhard Zumkeller, Nov 18 2012
CROSSREFS
Cf. A002627 (row sums).
Sequence in context: A209936 A213941 A360858 * A115196 A093346 A115597
KEYWORD
nonn,tabl,easy
AUTHOR
Alford Arnold, Oct 26 2010
STATUS
approved