login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181509
a(1) = 2, a(n) = (n-th-even n^3) - (sum of previous terms)
1
2, 6, 56, 152, 296, 488, 728, 1016, 1352, 1736, 2168, 2648, 3176, 3752, 4376, 5048, 5768, 6536, 7352, 8216, 9128, 10088, 11096, 12152, 13256, 14408, 15608, 16856, 18152, 19496, 20888, 22328, 23816, 25352, 26936, 28568, 30248, 31976, 33752
OFFSET
1,1
FORMULA
a(n) = 56-72*n+24*n^2, n>2. a(n) = (2*n-2)^3-sum_{i=1..n-1} a(i). [From R. J. Mathar, Nov 01 2010]
For n>2, a(1)=56, a(2)=152, a(3)=296, a(n)=3*a(n-1)-3*a(n-2)+a(n-3) [From Harvey P. Dale, May 05 2011]
G.f.: 2*x*(22*x^2+x^4+1)/(1-x)^3. - R. J. Mathar, Aug 26 2011
a(n)=8*A003215(n-2) for n>2. - J. M. Bergot, Aug 21 2013
MATHEMATICA
Join[{2, 6}, Table[56-72n+24n^2, {n, 3, 42}]] (* or *) Join[{2, 6}, LinearRecurrence[{3, -3, 1}, {56, 152, 296}, 40]] (* Harvey P. Dale, May 05 2011 *)
CROSSREFS
Cf. A000578.
Sequence in context: A084123 A193473 A336899 * A213026 A074023 A354315
KEYWORD
easy,nonn
AUTHOR
Giovanni Teofilatto, Oct 25 2010
EXTENSIONS
Corrected (replaced 2 and 4 by a 6 = 8-2) by R. J. Mathar, Nov 01 2010
STATUS
approved