login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002627
a(n) = n*a(n-1) + 1, a(0) = 0.
(Formerly M2858 N1149)
43
0, 1, 3, 10, 41, 206, 1237, 8660, 69281, 623530, 6235301, 68588312, 823059745, 10699776686, 149796873605, 2246953104076, 35951249665217, 611171244308690, 11001082397556421, 209020565553572000, 4180411311071440001, 87788637532500240022
OFFSET
0,3
COMMENTS
This sequence shares divisibility properties with A000522; each of the primes in A072456 divide only a finite number of terms of this sequence. - T. D. Noe, Jul 07 2005
Sum of the lengths of the first runs in all permutations of [n]. Example: a(3)=10 because the lengths of the first runs in the permutation (123),(13)2,(3)12,(2)13,(23)1 and (3)21 are 3,2,1,1,2 and 1, respectively (first runs are enclosed between parentheses). Number of cells in the last columns of all deco polyominoes of height n. A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column. a(n) = Sum_{k=1..n} k*A092582(n,k). - Emeric Deutsch, Aug 16 2006
Starting with offset 1 = eigensequence of an infinite lower triangular matrix with (1, 2, 3, ...) as the right border, (1, 1, 1, ...) as the left border, and the rest zeros. - Gary W. Adamson, Apr 27 2009
Sums of rows of the triangle in A173333, n > 0. - Reinhard Zumkeller, Feb 19 2010
if s(n) is a sequence defined as s(0) = x, s(n) = n*s(n-1)+k, n > 0 then s(n) = n!*x + a(n)*k. - Gary Detlefs, Feb 20 2010
Number of arrangements of proper subsets of n distinct objects, i.e., arrangements which are not permutations (where the empty set is considered a proper subset of any nonempty set); see example. - Daniel Forgues, Apr 23 2011
For n >= 0, A002627(n+1) is the sequence of sums of Pascal-like triangle with one side 1,1,..., and the other side A000522. - Vladimir Shevelev, Feb 06 2012
a(n) = q(n,1) for n >= 1, where the polynomials q are defined at A248669. - Clark Kimberling, Oct 11 2014
a(n) is the number of quasilinear weak orderings on {1,...,n}. - J. Devillet, Dec 22 2017
REFERENCES
D. Singh, The numbers L(m,n) and their relations with prepared Bernoulli and Eulerian numbers, Math. Student, 20 (1952), 66-70.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..449 (terms 0..100 from T. D. Noe)
Sanka Balasuriya, Igor E. Shparlinski and Arne Winterhof, An average bound for character sums with some counter-dependent recurrence sequences, Rocky Mt. J. Math. 39, No. 5, 1403-1409 (2009).
Elena Barcucci, Alberto Del Lungo, and Renzo Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.
Jonathan Beagley and Lara Pudwell, Colorful Tilings and Permutations, Journal of Integer Sequences, Vol. 24 (2021), Article 21.10.4.
Jimmy Devillet, Bisymmetric and quasitrivial operations: characterizations and enumerations, [math.RA] arXiv:1712.07856 (2017).
Nicholas Kapoor and P. Christopher Staecker, Ahead of the Count: An Algorithm for Probabilistic Prediction of Instant Runoff (IRV) Elections, arXiv:2405.09009 [cs.CY], 2024. See p. 11.
Daljit Singh, The numbers L(m,n) and their relations with prepared Bernoulli and Eulerian numbers, Math. Student, 20 (1952), 66-70. [Annotated scanned copy]
Jun Yan, Results on pattern avoidance in parking functions, arXiv:2404.07958 [math.CO], 2024. See p. 5.
FORMULA
a(n) = n! * Sum_{k=1..n} 1/k!.
a(n) = A000522(n) - n!. - Michael Somos, Mar 26 1999
a(n) = floor( n! * (e-1) ), n >= 1. - Amarnath Murthy, Mar 08 2002
E.g.f.: (exp(x)-1)/(1-x). - Mario Catalani (mario.catalani(AT)unito.it), Feb 06 2003
Binomial transform of A002467. - Ross La Haye, Sep 21 2004
a(n) = Sum_{j=1..n} (n-j)!*binomial(n,j). - Zerinvary Lajos, Jul 31 2006
a(n) = 1 + Sum_{k=0..n-1} k*a(k). - Benoit Cloitre, Jul 26 2008
a(m) = Integral_{s=0..oo} ((1+s)^m - s^m)*exp(-s) = GAMMA(m+1,1) * exp(1) - GAMMA(m+1). - Stephen Crowley, Jul 24 2009
From Sergei N. Gladkovskii, Jul 05 2012: (Start)
a(n+1) = A000522(n) + A001339(n) - A000142(n+1);
E.g.f.: Q(0)/(1-x), where Q(k)= 1 + (x-1)*k!/(1 - x/(x + (x-1)*(k+1)!/Q(k+1))); (continued fraction). (End)
E.g.f.: x/(1-x)*E(0)/2, where E(k)= 1 + 1/(1 - x/(x + (k+2)/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013
1/(e - 1) = 1 - 1!/(1*3) - 2!/(3*10) - 3!/(10*41) - 4!/(41*206) - ... (see A056542 and A185108). - Peter Bala, Oct 09 2013
Conjecture: a(n) + (-n-1)*a(n-1) + (n-1)*a(n-2) = 0. - R. J. Mathar, Feb 16 2014
The e.g.f. f(x) = (exp(x)-1)/(1-x) satisfies the differential equation: (1-x)*f'(x) - (2-x)*f(x) + 1, from which we can obtain the recurrence:
a(n+1) = a(n) + n! + Sum_{k=1..n} (n!/k!)*a(k). The above conjectured recurrence can be obtained from the original recurrence or from the differential equation satisfied by f(x). - Emanuele Munarini, Jun 20 2014
Limit_{n -> oo} a(n)/n! = exp(1) - 1. - Carmine Suriano, Jul 01 2015
Product_{n>=2} a(n)/(a(n)-1) = exp(1) - 1. See A091131. - James R. Buddenhagen, Jul 21 2019
EXAMPLE
[a(0), a(1), ...] = GAMMA(m+1,1)*exp(1) - GAMMA(m+1) = [exp(-1)*exp(1)-1, 2*exp(-1)*exp(1)-1, 5*exp(-1)*exp(1)-2, 16*exp(-1)*exp(1)-6, 65*exp(-1)*exp(1)-24, 326*exp(-1)*exp(1)-120, ...]. - Stephen Crowley, Jul 24 2009
From Daniel Forgues, Apr 25 2011: (Start)
n=0: {}: #{} = 0
n=1: {1}: #{()} = 1
n=2: {1,2}: #{(),(1),(2)} = 3
n=3: {1,2,3}: #{(),(1),(2),(3),(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)} = 10
(End)
x + 3*x^2 + 10*x^3 + 41*x^4 + 206*x^5 + 1237*x^6 + 8660*x^7 + 69281*x^8 + ...
MAPLE
A002627 := proc(n)
add( (n-j)!*binomial(n, j), j=1..n) ;
end proc:
seq(A002627(n), n=0..21) ; # Zerinvary Lajos, Jul 31 2006
MATHEMATICA
FoldList[ #1*#2 + 1 &, 0, Range[21]] (* Robert G. Wilson v, Oct 11 2005 *)
RecurrenceTable[{a[0]==0, a[n]==n*a[n-1]+1}, a, {n, 30}] (* Harvey P. Dale, Mar 29 2015 *)
PROG
(PARI) a(n)= n!*sum(k=1, n, 1/k!); \\ Joerg Arndt, Apr 24 2011
(Haskell)
a002627 n = a002627_list !! n
a002627_list = 0 : map (+ 1) (zipWith (*) [1..] a002627_list)
-- Reinhard Zumkeller, Mar 24 2013
(Maxima) makelist(sum(n!/k!, k, 1, n), n, 0, 40); /* Emanuele Munarini, Jun 20 2014 */
(Magma) I:=[1]; [0] cat [n le 1 select I[n] else n*Self(n-1)+1:n in [1..21]]; // Marius A. Burtea, Aug 07 2019
CROSSREFS
Second diagonal of A059922, cf. A056542.
Conjectured to give records in A130147.
Sequence in context: A245504 A305405 A030927 * A030802 A030942 A030855
KEYWORD
nonn,easy,nice
EXTENSIONS
Comments from Michael Somos
STATUS
approved