The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002629 Number of permutations of length n with one 3-sequence.
(Formerly M2003 N0792)
8
0, 0, 1, 2, 11, 62, 406, 3046, 25737, 242094, 2510733, 28473604, 350651588, 4661105036, 66529260545, 1014985068610, 16484495344135, 283989434253186, 5173041992087562, 99346991708245506, 2006304350543326057, 42505510227603678206, 942678881135812883321 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
a(n) is also the number of successions in all permutations of [n-1] with no 3-sequences. A succession of a permutation p is a position i such that p(i+1) - p(i) = 1. Example: a(4)=2 because in 132, 213, 2*31, 31*2, 321 we have 0+0+1+1+0=2 successions (marked *). - Emeric Deutsch, Sep 07 2010
REFERENCES
Jackson, D. M.; Reilly, J. W. Permutations with a prescribed number of p-runs. Ars Combinatoria 1 (1976), no. 1, 297-305.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. Riordan, Permutations without 3-sequences, Bull. Amer. Math. Soc., 51 (1945), 745-748.
FORMULA
a(n) = Sum(binomial(n-k-2,k-1)*A000166(n-k), k=1..floor((n-1)/2)). - Emeric Deutsch, Sep 07 2010
a(n) ~ (n-1)! * (1 - 4/n + 13/(2*n^2) + 29/(6*n^3) - 551/(24*n^4) - 1101/(20*n^5) + 58879/(720*n^6)). - Vaclav Kotesovec, Mar 16 2015
EXAMPLE
a(4) = 2 because we have 2341 and 4123. - Emeric Deutsch, Sep 07 2010
MAPLE
d[0] := 1: for n to 51 do d[n] := n*d[n-1]+(-1)^n end do: a := proc (n) options operator, arrow: sum(binomial(n-k-2, k-1)*d[n-k], k = 1 .. floor((1/2)*n-1/2)) end proc; seq(a(n), n = 1 .. 23); # Emeric Deutsch, Sep 07 2010
# second Maple program:
a:= proc(n) option remember;
`if`(n<5, -n*(n-1)*(n-2)*(n-5)/12,
(n-4) *a(n-1)+(3*n-6) *a(n-2)+(4*n-8) *a(n-3)
+(3*n-6)*a(n-4)+(n-2) *a(n-5))
end:
seq(a(n), n=1..25); # Alois P. Heinz, Jan 25 2014
MATHEMATICA
a[n_] := Sum[Binomial[n-k-2, k-1]*Subfactorial[n-k], {k, 1, (n-1)/2}]; Array[a, 23] (* Jean-François Alcover, Mar 13 2014, after Emeric Deutsch *)
CROSSREFS
Sequence in context: A183160 A020078 A365131 * A235937 A065928 A188648
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Max Alekseyev, Feb 20 2010
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 20 03:57 EDT 2024. Contains 372703 sequences. (Running on oeis4.)