login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065928
(x,y) = (a(n),a(n+1)) are the solutions of (t(x)+t(y))/(1+xy) = t(2) = 3, where t(n) denotes the n-th triangular number t(n) = n(n+1)/2.
1
2, 11, 63, 366, 2132, 12425, 72417, 422076, 2460038, 14338151, 83568867, 487075050, 2838881432, 16546213541, 96438399813, 562084185336, 3276066712202, 19094316087875, 111289829815047, 648644662802406, 3780578146999388, 22034824219193921, 128428367168164137
OFFSET
0,1
FORMULA
a(n) = 2*t(m)*a(n-1)-a(n-2)-1, a(0) = m, a(1) = m^3+m^2-1 with m = 2.
G.f.: (3*x-2)/((1-6*x+x^2)*(x-1)).
a(0)=2, a(1)=11, a(2)=63, a(n)=7*a(n-1)-7*a(n-2)+a(n-3). - Harvey P. Dale, Nov 06 2011
a(n) = (4+(14-11*sqrt(2))*(3-2*sqrt(2))^n+(3+2*sqrt(2))^n*(14+11*sqrt(2)))/16. - Colin Barker, Mar 05 2016
MATHEMATICA
CoefficientList[Series[(3x-2)/((1-6x+x^2)(x-1)), {x, 0, 20}], x] (* or *) LinearRecurrence[{7, -7, 1}, {2, 11, 63}, 20] (* Harvey P. Dale, Nov 06 2011 *)
PROG
(Magma) I:=[2, 11, 63]; [n le 3 select I[n] else 7*Self(n-1)-7*Self(n-2)+Self(n-3): n in [1..20]]; // Vincenzo Librandi, Nov 13 2011
(PARI) Vec((3*x-2)/((1-6*x+x^2)*(x-1)) + O(x^40)) \\ Colin Barker, Mar 05 2016
CROSSREFS
Sequence in context: A365131 A002629 A235937 * A188648 A114175 A080049
KEYWORD
nonn,easy
AUTHOR
Floor van Lamoen, Nov 29 2001
STATUS
approved