The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A065929 (x,y) = (a(n),a(n+1)) are the solutions of (t(x)+t(y))/(1+xy) = t(3) = 6, where t(n) denotes the n-th triangular number t(n) = n(n+1)/2. 1
3, 35, 416, 4956, 59055, 703703, 8385380, 99920856, 1190664891, 14188057835, 169066029128, 2014604291700, 24006185471271, 286059621363551, 3408709270891340, 40618451629332528, 484012710281098995, 5767534071743855411, 68726396150645165936 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
LINKS
FORMULA
a(n) = 2*t(m)*a(n-1)-a(n-2)-1, a(0) = m, a(1) = m^3+m^2-1 with m = 3.
G.f.: (4*x-3) / ((1-12*x+x^2)(x-1)).
a(0)=3, a(1)=35, a(2)=416, a(n) = 13*a(n-1)-13*a(n-2)+a(n-3). - Harvey P. Dale, Mar 23 2012
a(n) = (2+(29-5*sqrt(35))*(6-sqrt(35))^n+(6+sqrt(35))^n*(29+5*sqrt(35)))/20. - Colin Barker, Mar 05 2016
MAPLE
g := (4*x-3)/(1-12*x+x^2)/(x-1): s := series(g, x, 40): for i from 0 to 30 do printf(`%d, `, coeff(s, x, i)) od: # James A. Sellers, Feb 11 2002
MATHEMATICA
CoefficientList[Series[(4x-3)/((1-12x+x^2)(x-1)), {x, 0, 30}], x] (* or *) LinearRecurrence[{13, -13, 1}, {3, 35, 416}, 30] (* Harvey P. Dale, Mar 23 2012 *)
PROG
(PARI) Vec((4*x-3)/((1-12*x+x^2)*(x-1)) + O(x^25)) \\ Colin Barker, Mar 05 2016
CROSSREFS
Cf. A000217 (triangular numbers).
Sequence in context: A221687 A221223 A006767 * A161495 A179135 A100033
KEYWORD
easy,nonn
AUTHOR
Floor van Lamoen, Nov 29 2001
EXTENSIONS
More terms from James A. Sellers, Feb 11 2002
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 14 23:20 EDT 2024. Contains 373401 sequences. (Running on oeis4.)