The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A065929 (x,y) = (a(n),a(n+1)) are the solutions of (t(x)+t(y))/(1+xy) = t(3) = 6, where t(n) denotes the n-th triangular number t(n) = n(n+1)/2. 1
 3, 35, 416, 4956, 59055, 703703, 8385380, 99920856, 1190664891, 14188057835, 169066029128, 2014604291700, 24006185471271, 286059621363551, 3408709270891340, 40618451629332528, 484012710281098995, 5767534071743855411, 68726396150645165936 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Colin Barker, Table of n, a(n) for n = 0..900 J.-P. Ehrmann et al., Problem POLYA002, Integer pairs (x,y) for which (x^2+y^2)/(1+pxy) is an integer. Index entries for linear recurrences with constant coefficients, signature (13,-13,1). FORMULA a(n) = 2*t(m)*a(n-1)-a(n-2)-1, a(0) = m, a(1) = m^3+m^2-1 with m = 3. G.f.: (4*x-3) / ((1-12*x+x^2)(x-1)). a(0)=3, a(1)=35, a(2)=416, a(n) = 13*a(n-1)-13*a(n-2)+a(n-3). - Harvey P. Dale, Mar 23 2012 a(n) = (2+(29-5*sqrt(35))*(6-sqrt(35))^n+(6+sqrt(35))^n*(29+5*sqrt(35)))/20. - Colin Barker, Mar 05 2016 MAPLE g := (4*x-3)/(1-12*x+x^2)/(x-1): s := series(g, x, 40): for i from 0 to 30 do printf(`%d, `, coeff(s, x, i)) od: # James A. Sellers, Feb 11 2002 MATHEMATICA CoefficientList[Series[(4x-3)/((1-12x+x^2)(x-1)), {x, 0, 30}], x] (* or *) LinearRecurrence[{13, -13, 1}, {3, 35, 416}, 30] (* Harvey P. Dale, Mar 23 2012 *) PROG (PARI) Vec((4*x-3)/((1-12*x+x^2)*(x-1)) + O(x^25)) \\ Colin Barker, Mar 05 2016 CROSSREFS Cf. A000217 (triangular numbers). Sequence in context: A221687 A221223 A006767 * A161495 A179135 A100033 Adjacent sequences: A065926 A065927 A065928 * A065930 A065931 A065932 KEYWORD easy,nonn AUTHOR Floor van Lamoen, Nov 29 2001 EXTENSIONS More terms from James A. Sellers, Feb 11 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 14 23:20 EDT 2024. Contains 373401 sequences. (Running on oeis4.)