login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A065931 Triangle of coefficients of Bessel polynomials {y_n(x)}'. 2
1, 3, 6, 6, 30, 45, 10, 90, 315, 420, 15, 210, 1260, 3780, 4725, 21, 420, 3780, 18900, 51975, 62370, 28, 756, 9450, 69300, 311850, 810810, 945945, 36, 1260, 20790, 207900, 1351350, 5675670, 14189175, 16216200, 45, 1980, 41580, 540540, 4729725, 28378350, 113513400, 275675400, 310134825 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

REFERENCES

J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.

LINKS

G. C. Greubel, Rows n = 1..100 of triangle, flattened

Index entries for sequences related to Bessel functions or polynomials

FORMULA

From G. C. Greubel, Jul 10 2019: (Start)

(y_{n}(x))' = (1/2)*Sum_{k=0..n-1} ((n+k+1)!/(k!*(n-k-1)!)*(x/2)^k.

T(n, k) = ((n+k+1)!/(k!*(n-k-1)!)*(1/2)^(k+1) for 0 <= k <= n-1, n>=1. (End)

EXAMPLE

For n = 1 .. 4 the polynomials are

(y_{1}(x))' =  1;

(y_{2}(x))' =  3 +  6*x;

(y_{3}(x))' =  6 + 30*x +  45*x^2;

(y_{4}(x))' = 10 + 90*x + 315*x^2 + 420*x^3.

MATHEMATICA

Table[(n+k+1)!/(k!*(n-k-1)!)*(1/2)^(k+1), {n, 1, 12}, {k, 0, n-1}]//Flatten (* G. C. Greubel, Jul 10 2019 *)

PROG

(PARI) for(n=1, 12, for(k=0, n-1, print1((n+k+1)!/(k!*(n-k-1)!)*(1/2)^(k+1), ", "))) \\ G. C. Greubel, Jul 10 2019

(MAGMA) f:=Factorial; [(f(n+k+1)/(f(k)*f(n-k-1)))*(1/2)^(k+1): k in [0..n-1], n in [1..12]]; // G. C. Greubel, Jul 10 2019

(Sage) f=factorial; [[(f(n+k+1)/(f(k)*f(n-k-1)))*(1/2)^(k+1) for k in (0..n-1)] for n in (1..12)] # G. C. Greubel, Jul 10 2019

(GAP) f:=Factorial;; Flat(List([1..12], n-> List([0..n-1], k-> (f(n+k+1)/(f(k)*f(n-k-1)))*(1/2)^(k+1) ))); # G. C. Greubel, Jul 10 2019

CROSSREFS

Cf. A001497, A001498, A065943.

Sequence in context: A319446 A181372 A168426 * A137497 A032338 A081814

Adjacent sequences:  A065928 A065929 A065930 * A065932 A065933 A065934

KEYWORD

nonn,tabl

AUTHOR

N. J. A. Sloane, Dec 08 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 08:26 EDT 2020. Contains 334585 sequences. (Running on oeis4.)