login
Triangle of coefficients of Bessel polynomials {y_n(x)}'.
2

%I #14 Sep 08 2022 08:45:04

%S 1,3,6,6,30,45,10,90,315,420,15,210,1260,3780,4725,21,420,3780,18900,

%T 51975,62370,28,756,9450,69300,311850,810810,945945,36,1260,20790,

%U 207900,1351350,5675670,14189175,16216200,45,1980,41580,540540,4729725,28378350,113513400,275675400,310134825

%N Triangle of coefficients of Bessel polynomials {y_n(x)}'.

%D J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.

%H G. C. Greubel, <a href="/A065931/b065931.txt">Rows n = 1..100 of triangle, flattened</a>

%H <a href="/index/Be#Bessel">Index entries for sequences related to Bessel functions or polynomials</a>

%F From _G. C. Greubel_, Jul 10 2019: (Start)

%F (y_{n}(x))' = (1/2)*Sum_{k=0..n-1} ((n+k+1)!/(k!*(n-k-1)!)*(x/2)^k.

%F T(n, k) = ((n+k+1)!/(k!*(n-k-1)!)*(1/2)^(k+1) for 0 <= k <= n-1, n>=1. (End)

%e For n = 1 .. 4 the polynomials are

%e (y_{1}(x))' = 1;

%e (y_{2}(x))' = 3 + 6*x;

%e (y_{3}(x))' = 6 + 30*x + 45*x^2;

%e (y_{4}(x))' = 10 + 90*x + 315*x^2 + 420*x^3.

%t Table[(n+k+1)!/(k!*(n-k-1)!)*(1/2)^(k+1), {n,1,12}, {k,0,n-1}]//Flatten (* _G. C. Greubel_, Jul 10 2019 *)

%o (PARI) for(n=1,12, for(k=0,n-1, print1((n+k+1)!/(k!*(n-k-1)!)*(1/2)^(k+1), ", "))) \\ _G. C. Greubel_, Jul 10 2019

%o (Magma) f:=Factorial; [(f(n+k+1)/(f(k)*f(n-k-1)))*(1/2)^(k+1): k in [0..n-1], n in [1..12]]; // _G. C. Greubel_, Jul 10 2019

%o (Sage) f=factorial; [[(f(n+k+1)/(f(k)*f(n-k-1)))*(1/2)^(k+1) for k in (0..n-1)] for n in (1..12)] # _G. C. Greubel_, Jul 10 2019

%o (GAP) f:=Factorial;; Flat(List([1..12], n-> List([0..n-1], k-> (f(n+k+1)/(f(k)*f(n-k-1)))*(1/2)^(k+1) ))); # _G. C. Greubel_, Jul 10 2019

%Y Cf. A001497, A001498, A065943.

%K nonn,tabl

%O 1,2

%A _N. J. A. Sloane_, Dec 08 2001