|
|
A002628
|
|
Number of permutations of length n without 3-sequences.
(Formerly M1536 N0600)
|
|
10
|
|
|
1, 1, 2, 5, 21, 106, 643, 4547, 36696, 332769, 3349507, 37054436, 446867351, 5834728509, 82003113550, 1234297698757, 19809901558841, 337707109446702, 6094059760690035, 116052543892621951, 2325905946434516516, 48937614361477154273, 1078523843237914046247
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
|
|
REFERENCES
|
Jackson, D. M.; Reilly, J. W. Permutations with a prescribed number of p-runs. Ars Combinatoria 1 (1976), number 1, 297-305.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
|
|
FORMULA
|
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k)*(d(n-k) + d(n-k-1)) for n>0, where d(j) = A000166(j) are the derangement numbers. - Emeric Deutsch, Sep 06 2010
|
|
EXAMPLE
|
a(4) = 21 because only 1234, 2341, and 4123 contain 3-sequences. - Emeric Deutsch, Sep 06 2010
|
|
MAPLE
|
seq(coeff(convert(series(add(m!*((t-t^3)/(1-t^3))^m, m=0..50), t, 50), polynom), t, n), n=0..25); # Pab Ter, Nov 06 2005
d[-1]:= 0: for n from 0 to 51 do d[n] := n*d[n-1]+(-1)^n end do: a:= proc(n) add(binomial(n-k, k)*(d[n-k]+d[n-k-1]), k = 0..floor((1/2)*n)) end proc: seq(a(n), n = 0..25); # Emeric Deutsch, Sep 06 2010
# third Maple program:
a:= proc(n) option remember; `if`(n<5,
[1$2, 2, 5, 21][n+1], (n-3)*a(n-1)+(3*n-6)*a(n-2)+
(4*n-12)*a(n-3)+(3*n-12)*a(n-4)+(n-5)*a(n-5))
end:
|
|
MATHEMATICA
|
d[0] = 1; d[n_] := d[n] = n d[n - 1] + (-1)^n;
T[n_, k_] := If[n == 0 && k == 0, 1, If[k <= n/2, Binomial[n - k, k] d[n + 1 - k]/(n - k), 0]];
a[n_] := Sum[T[n, k], {k, 0, Quotient[n, 2]}];
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
More terms from Pab Ter (pabrlos2(AT)yahoo.com), Nov 06 2005
|
|
STATUS
|
approved
|
|
|
|