login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180185
Triangle read by rows: T(n,k) is the number of permutations of [n] having no 3-sequences and having k successions (0 <= k <= floor(n/2)); a succession of a permutation p is a position i such that p(i +1) - p(i) = 1.
1
1, 1, 1, 1, 3, 2, 11, 9, 1, 53, 44, 9, 309, 265, 66, 3, 2119, 1854, 530, 44, 16687, 14833, 4635, 530, 11, 148329, 133496, 44499, 6180, 265, 1468457, 1334961, 467236, 74165, 4635, 53, 16019531, 14684570, 5339844, 934472, 74165, 1854, 190899411
OFFSET
0,5
COMMENTS
Row n has 1+floor(n/2) entries.
Sum of entries in row n is A002628(n).
FORMULA
T(n,k) = binomial(n-k,k)*(d(n-k) + d(n-k-1)), where d(j) = A000166(j) are the derangement numbers.
T(n,0) = d(n) + d(n-1) = A000255(n-1).
T(n,1) = d(n).
Sum_{k>=0} k*T(n,k) = A002629(n+1).
EXAMPLE
T(6,3)=3 because we have 125634, 341256, and 563412.
Triangle starts:
1;
1;
1, 1;
3, 2;
11, 9, 1;
53, 44, 9;
309, 265, 66, 3;
2119, 1854, 530, 44;
MAPLE
d[0] := 1: for n to 51 do d[n] := n*d[n-1]+(-1)^n end do: a := proc (n, k) if n = 0 and k = 0 then 1 elif k <= (1/2)*n then binomial(n-k, k)*d[n+1-k]/(n-k) else 0 end if end proc: for n from 0 to 12 do seq(a(n, k), k = 0 .. (1/2)*n) end do; # yields sequence in triangular form
MATHEMATICA
d[0] = 1; d[n_] := d[n] = n d[n - 1] + (-1)^n;
T[n_, k_] := If[n == 0 && k == 0, 1, If[k <= n/2, Binomial[n - k, k] d[n + 1 - k]/(n - k), 0]];
Table[T[n, k], {n, 0, 20}, {k, 0, Quotient[n, 2]}] // Flatten (* Jean-François Alcover, May 23 2020 *)
PROG
(PARI) d(n) = if(n<2, !n , round(n!/exp(1)));
for(n=0, 20, for(k=0, (n\2), print1(binomial(n - k, k)*(d(n - k) + d(n - k - 1)), ", "); ); print(); ) \\ Indranil Ghosh, Apr 12 2017
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Sep 06 2010
STATUS
approved