login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180188
Triangle read by rows: T(n,k) is the number of permutations of [n] with k circular successions (0<=k<=n-1). A circular succession in a permutation p of [n] is either a pair p(i), p(i+1), where p(i+1)=p(i)+1 or the pair p(n), p(1) if p(1)=p(n)+1.
4
1, 0, 2, 3, 0, 3, 8, 12, 0, 4, 45, 40, 30, 0, 5, 264, 270, 120, 60, 0, 6, 1855, 1848, 945, 280, 105, 0, 7, 14832, 14840, 7392, 2520, 560, 168, 0, 8, 133497, 133488, 66780, 22176, 5670, 1008, 252, 0, 9, 1334960, 1334970, 667440, 222600, 55440, 11340, 1680, 360, 0
OFFSET
1,3
COMMENTS
For example, p=(4,1,2,5,3) has 2 circular successions: (1,2) and (3,4).
Sum of entries in row n = n! = A000142(n).
T(n,0)=nd(n-1)=A000240(n).
T(n,1)=n(n-1)d(n-2)=A180189(n).
Sum(k*T(n,k), k>=0)=n! = A000142(n) if n>=2.
LINKS
S. M. Tanny, Permutations and successions, J. Combinatorial Theory, Series A, 21 (1976), 196-202.
FORMULA
T(n,k) = n*C(n-1,k)*d(n-1-k), where d(j) = A000166(j) are the derangement numbers (see Prop. 1 of the Tanny reference).
T(n,k) = n*A008290(n-1,k), 0<=k<n, n>=1. - R. J. Mathar, Sep 08 2013
EXAMPLE
T(3,2) = 3 because we have 123, 312, and 231.
The triangle starts:
1;
0, 2;
3, 0, 3;
8, 12, 0, 4;
45, 40, 30, 0, 5;
MAPLE
A180188 := proc (n, k) n*binomial(n-1, k)*A000166(n-1-k) end proc:
for n to 10 do seq(A180188(n, k), k = 0 .. n-1) end do; # yields sequence in triangular form
MATHEMATICA
T[n_, k_] := n*Binomial[n-1, k]*Subfactorial[n-1-k]; Table[T[n, k], {n, 0, 10}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Feb 19 2017 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Sep 06 2010
STATUS
approved