OFFSET
1,3
COMMENTS
LINKS
Alois P. Heinz, Rows n = 1..141, flattened
S. M. Tanny, Permutations and successions, J. Combinatorial Theory, Series A, 21 (1976), 196-202.
FORMULA
T(n,k) = n*C(n-1,k)*d(n-1-k), where d(j) = A000166(j) are the derangement numbers (see Prop. 1 of the Tanny reference).
T(n,k) = n*A008290(n-1,k), 0<=k<n, n>=1. - R. J. Mathar, Sep 08 2013
EXAMPLE
T(3,2) = 3 because we have 123, 312, and 231.
The triangle starts:
1;
0, 2;
3, 0, 3;
8, 12, 0, 4;
45, 40, 30, 0, 5;
MAPLE
MATHEMATICA
T[n_, k_] := n*Binomial[n-1, k]*Subfactorial[n-1-k]; Table[T[n, k], {n, 0, 10}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Feb 19 2017 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Sep 06 2010
STATUS
approved