login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180191
Number of permutations of [n] having at least one succession. A succession of a permutation p is a position i such that p(i+1)-p(i) = 1.
22
0, 1, 3, 13, 67, 411, 2921, 23633, 214551, 2160343, 23897269, 288102189, 3760013027, 52816397219, 794536751217, 12744659120521, 217140271564591, 3916221952414383, 74539067188152941, 1493136645424092773, 31400620285465593339, 691708660911435955579
OFFSET
1,3
COMMENTS
a(n) = A180190(n,1).
a(n+2) = p(n+2) where p(x) is the unique degree-n polynomial such that p(k) = k! for k = 1, ..., n+1. - Michael Somos, Jan 05 2012
From Jon Perry, Jan 04 2013: (Start)
Number of permutations of {1,...,n-1,n+1} with at least one indexed point p(k)=k with 1<=k<=n. Note that this means p(k)=n+1 is never an indexed point as k<n+1. Permutations of {1,2,4} with an indexed point p(k)=k are 124, 142 and 421, so a(3)=3.
For n>1, a(n) is the number of permutations of [n+1] that have a fixed point and contain 12; for example the a(3)=3 such permutations of {1,2,3,4} are 1234, 1243, and 3124.
(End)
For n > 0: row sums of triangle A116853. - Reinhard Zumkeller, Aug 31 2014
FORMULA
a(n) = n! - d(n) - d(n-1), where d(j) = A000166(j) are the derangement numbers.
a(n) = n! - A000255(n-1) = A002467(n) - A000166(n-1). - Jon Perry, Jan 05 2013
a(n) = (n-1)! [x^(n-1)] (1-exp(-x))/(1-x)^2. - Alois P. Heinz, Feb 23 2019
EXAMPLE
x^2 + 3*x^3 + 13*x^4 + 67*x^5 + 411*x^6 + 2921*x^7 + 23633*x^8 + ...
a(3) = 3 because we have 123, 312, and 231; the permutations 132, 213, and 321 have no successions.
a(4) = 13 since p(x) = (3*x^2 - 7*x + 6) / 2 interpolates p(1) = 1, p(2) = 2, p(3) = 6, and p(4) = 13. - Michael Somos, Jan 05 2012
MAPLE
d[0] := 1: for n to 50 do d[n] := n*d[n-1]+(-1)^n end do: seq(factorial(n)-d[n]-d[n-1], n = 1 .. 22);
MATHEMATICA
f[n_] := Sum[ -(-1)^k (n - k)! Binomial[n - 1, k], {k, 1, n}]; Array[f, 20] (* Robert G. Wilson v, Oct 16 2010 *)
PROG
(PARI) {a(n) = if( n<2, 0, n--; subst( polinterpolate( vector( n, k, k!)), x, n+1))} /* Michael Somos, Jan 05 2012 */
(Haskell)
a180191 n = if n == 1 then 0 else sum $ a116853_row (n - 1)
-- Reinhard Zumkeller, Aug 31 2014
CROSSREFS
Column k=1 of A306234, A306461, and of A324362(n-1).
Sequence in context: A350855 A295226 A028418 * A080832 A194019 A020017
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Sep 07 2010
STATUS
approved