login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080832
Expansion of e.g.f. exp(x) * (sec(exp(x) - 1))^2.
6
1, 1, 3, 13, 67, 421, 3115, 26349, 250867, 2655541, 30929019, 393019837, 5410699075, 80221867909, 1274393162827, 21594697199757, 388796268801427, 7411769447027413, 149143210226032923, 3159088788867736669
OFFSET
0,3
COMMENTS
Take the smallest element from each block of the set partitions of {1,2,...,n+1} into an odd number of blocks. Form a "zag" permutation a[1],a[2],...,a[k] such that a[1] < a[2] > a[3] < ... > a[k]. a(n) is the number of ways to order the blocks in accordance with such "zag" permutations. - Geoffrey Critzer, Nov 23 2012
LINKS
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 144
FORMULA
E.g.f.: exp(x) / (cos(exp(x) - 1))^2.
The sequence 0, 1, 1, 3, ... has e.g.f. tan(exp(x)-1). It has general term sum{k=0..n, S2(n, k) A009006(k)} for n>1 (S2(n, k) Stirling numbers of second kind). - Paul Barry, Apr 20 2005
a(n) ~ 2*n * n! / ((2+Pi) * (log(1+Pi/2))^(n+2)). - Vaclav Kotesovec, Jul 28 2018
MAPLE
seq(coeff(series(factorial(n)*exp(x)*(sec(exp(x)-1))^2, x, n+1), x, n), n=0..25); # Muniru A Asiru, Jul 28 2018
MATHEMATICA
nn=21; t=Sum[n^(n-1)x^n/n!, {n, 1, nn}]; Drop[Range[0, nn]!CoefficientList[ Series[Tan[Exp[x]-1], {x, 0, nn}], x], 1] (* Geoffrey Critzer, Nov 23 2012 *)
CROSSREFS
Sequence in context: A295226 A028418 A180191 * A194019 A020017 A060014
KEYWORD
easy,nonn
AUTHOR
Emanuele Munarini, Mar 28 2003
STATUS
approved