login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028418
Sum over all n! permutations of n letters of maximum cycle length.
12
1, 3, 13, 67, 411, 2911, 23563, 213543, 2149927, 23759791, 286370151, 3734929903, 52455166063, 788704078527, 12648867695311, 215433088624351, 3884791172487903, 73919882720901823, 1480542628345939807, 31128584449987511871, 685635398619169059391
OFFSET
1,2
COMMENTS
Sum the n-permutations having at least 1 cycle of length >= i for all i >= 1. A000142 + A033312 + A066052 + A202364 + ... The summation is precisely that indicated in the title since each permutation whose longest cycle = i is counted i times. - Geoffrey Critzer, Jan 09 2013
REFERENCES
S. W. Golomb, Shift-Register Sequences, Holden-Day, San Francisco, 1967, p. 183.
R. Sedgewick and P. Flajolet, Analysis of Algorithms, Addison Wesley, 1996, page 358.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..450 (first 142 terms from Thomas Dybdahl Ahle)
Ph. Flajolet and A. Odlyzko, Singularity analysis of generating functions, p. 22.
FORMULA
E.g.f.: Sum_{k>=0} (1/(1-x) - exp(Sum_{j=1..k} x^j/j)).
a(n) = f(n, 0, n, n!) where f(L, r, n, m) = m*r if r >= l, otherwise Sum_{k=0..L-1} (f(k, max(L-k,r), n-1, m/n) + (n-L)*f(L, r, n-1, m/n)). - Thomas Dybdahl Ahle, Aug 15 2011
a(n) = Sum_{k=1..n} k * A126074(n,k). - Alois P. Heinz, May 17 2016
MAPLE
b:= proc(n, m) option remember; `if`(n=0, m, add((j-1)!*
b(n-j, max(m, j))*binomial(n-1, j-1), j=1..n))
end:
a:= n-> b(n, 0):
seq(a(n), n=1..25); # Alois P. Heinz, May 14 2016
MATHEMATICA
kmax = 19; gf[x_] = Sum[ 1/(1-x) - 1/(E^((x^(1+k)*Hypergeometric2F1[1+k, 1, 2+k, x])/ (1+k))*(1-x)), {k, 0, kmax}];
a[n_] := n!*Coefficient[Series[gf[x], {x, 0, kmax}], x^n]; Array[a, kmax]
(* Jean-François Alcover, Jun 22 2011, after e.g.f. *)
a[ n_] := If[ n < 1, 0, 1 + Total @ Apply[ Max, Map[ Length, First /@ PermutationCycles /@ Drop[ Permutations @ Range @ n, 1], {2}], 1]]; (* Michael Somos, Aug 19 2018 *)
CROSSREFS
Column k=1 of A322384.
Sequence in context: A367919 A350855 A295226 * A180191 A080832 A194019
KEYWORD
nonn
AUTHOR
Joe Keane (jgk(AT)jgk.org)
EXTENSIONS
More terms from Vladeta Jovovic, Sep 19 2002
More terms from Thomas Dybdahl Ahle, Aug 15 2011
STATUS
approved