login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A322384 Number T(n,k) of entries in the k-th cycles of all permutations of [n] when cycles are ordered by decreasing lengths (and increasing smallest elements); triangle T(n,k), n>=1, 1<=k<=n, read by rows. 15
1, 3, 1, 13, 4, 1, 67, 21, 7, 1, 411, 131, 46, 11, 1, 2911, 950, 341, 101, 16, 1, 23563, 7694, 2871, 932, 197, 22, 1, 213543, 70343, 26797, 9185, 2311, 351, 29, 1, 2149927, 709015, 275353, 98317, 27568, 5119, 583, 37, 1, 23759791, 7867174, 3090544, 1141614, 343909, 73639, 10366, 916, 46, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Alois P. Heinz, Rows n = 1..141, flattened

Andrew V. Sills, Integer Partitions Probability Distributions, arXiv:1912.05306 [math.CO], 2019.

Wikipedia, Permutation

EXAMPLE

The 6 permutations of {1,2,3} are:

  (1)     (2) (3)

  (1,2)   (3)

  (1,3)   (2)

  (2,3)   (1)

  (1,2,3)

  (1,3,2)

so there are 13 elements in the first cycles, 4 in the second cycles and only 1 in the third cycles.

Triangle T(n,k) begins:

       1;

       3,     1;

      13,     4,     1;

      67,    21,     7,    1;

     411,   131,    46,   11,    1;

    2911,   950,   341,  101,   16,   1;

   23563,  7694,  2871,  932,  197,  22,  1;

  213543, 70343, 26797, 9185, 2311, 351, 29, 1;

MAPLE

b:= proc(n, l) option remember; `if`(n=0, add(l[-i]*

      x^i, i=1..nops(l)), add(binomial(n-1, j-1)*

      b(n-j, sort([l[], j]))*(j-1)!, j=1..n))

    end:

T:= n-> (p-> (seq(coeff(p, x, i), i=1..n)))(b(n, [])):

seq(T(n), n=1..12);

MATHEMATICA

b[n_, l_] := b[n, l] = If[n == 0, Sum[l[[-i]]*x^i, {i, 1, Length[l]}], Sum[Binomial[n-1, j-1]*b[n-j, Sort[Append[l, j]]]*(j-1)!, {j, 1, n}]];

T[n_] := CoefficientList[b[n, {}], x] // Rest;

Array[T, 12] // Flatten  (* Jean-Fran├žois Alcover, Feb 26 2020, after Alois P. Heinz *)

CROSSREFS

Columns k=1-10 give: A028418, A332851, A332852, A332853, A332854, A332855, A332856, A332857, A332858, A332859.

Row sums give A001563.

T(2n,n) gives A332928.

Cf. A185105, A322383.

Sequence in context: A295827 A277197 A297898 * A113139 A266577 A143411

Adjacent sequences:  A322381 A322382 A322383 * A322385 A322386 A322387

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Dec 05 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 4 11:58 EDT 2020. Contains 335448 sequences. (Running on oeis4.)