OFFSET
1,2
LINKS
Alois P. Heinz, Rows n = 1..141, flattened
Andrew V. Sills, Integer Partitions Probability Distributions, arXiv:1912.05306 [math.CO], 2019.
Wikipedia, Permutation
EXAMPLE
The 6 permutations of {1,2,3} are:
(1) (2) (3)
(1,2) (3)
(1,3) (2)
(2,3) (1)
(1,2,3)
(1,3,2)
so there are 13 elements in the first cycles, 4 in the second cycles and only 1 in the third cycles.
Triangle T(n,k) begins:
1;
3, 1;
13, 4, 1;
67, 21, 7, 1;
411, 131, 46, 11, 1;
2911, 950, 341, 101, 16, 1;
23563, 7694, 2871, 932, 197, 22, 1;
213543, 70343, 26797, 9185, 2311, 351, 29, 1;
...
MAPLE
b:= proc(n, l) option remember; `if`(n=0, add(l[-i]*
x^i, i=1..nops(l)), add(binomial(n-1, j-1)*
b(n-j, sort([l[], j]))*(j-1)!, j=1..n))
end:
T:= n-> (p-> (seq(coeff(p, x, i), i=1..n)))(b(n, [])):
seq(T(n), n=1..12);
MATHEMATICA
b[n_, l_] := b[n, l] = If[n == 0, Sum[l[[-i]]*x^i, {i, 1, Length[l]}], Sum[Binomial[n-1, j-1]*b[n-j, Sort[Append[l, j]]]*(j-1)!, {j, 1, n}]];
T[n_] := CoefficientList[b[n, {}], x] // Rest;
Array[T, 12] // Flatten (* Jean-François Alcover, Feb 26 2020, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Dec 05 2018
STATUS
approved