OFFSET
1,2
LINKS
Alois P. Heinz, Rows n = 1..141, flattened
Andrew V. Sills, Integer Partitions Probability Distributions, arXiv:1912.05306 [math.CO], 2019.
Wikipedia, Permutation
EXAMPLE
The 6 permutations of {1,2,3} are:
(1) (2) (3)
(1) (2,3)
(2) (1,3)
(3) (1,2)
(1,2,3)
(1,3,2)
so there are 10 elements in the first cycles, 7 in the second cycles and only 1 in the third cycles.
Triangle T(n,k) begins:
1;
3, 1;
10, 7, 1;
45, 37, 13, 1;
236, 241, 101, 21, 1;
1505, 1661, 896, 226, 31, 1;
10914, 13301, 7967, 2612, 442, 43, 1;
90601, 117209, 78205, 29261, 6441, 785, 57, 1;
...
MAPLE
b:= proc(n, l) option remember; `if`(n=0, add(l[i]*
x^i, i=1..nops(l)), add(binomial(n-1, j-1)*
b(n-j, sort([l[], j]))*(j-1)!, j=1..n))
end:
T:= n-> (p-> (seq(coeff(p, x, i), i=1..n)))(b(n, [])):
seq(T(n), n=1..12);
MATHEMATICA
b[n_, l_] := b[n, l] = If[n == 0, l.x^Range[Length[l]], Sum[Binomial[n - 1, j - 1] b[n - j, Sort[Append[l, j]]] (j - 1)!, {j, 1, n}]];
T[n_] := Rest @ CoefficientList[b[n, {}], x];
Array[T, 12] // Flatten (* Jean-François Alcover, Mar 03 2020, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Dec 05 2018
STATUS
approved