login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322383
Number T(n,k) of entries in the k-th cycles of all permutations of [n] when cycles are ordered by increasing lengths (and increasing smallest elements); triangle T(n,k), n>=1, 1<=k<=n, read by rows.
15
1, 3, 1, 10, 7, 1, 45, 37, 13, 1, 236, 241, 101, 21, 1, 1505, 1661, 896, 226, 31, 1, 10914, 13301, 7967, 2612, 442, 43, 1, 90601, 117209, 78205, 29261, 6441, 785, 57, 1, 837304, 1150297, 827521, 346453, 88909, 14065, 1297, 73, 1, 8610129, 12314329, 9507454, 4338214, 1253104, 234646, 28006, 2026, 91, 1
OFFSET
1,2
LINKS
Andrew V. Sills, Integer Partitions Probability Distributions, arXiv:1912.05306 [math.CO], 2019.
Wikipedia, Permutation
EXAMPLE
The 6 permutations of {1,2,3} are:
(1) (2) (3)
(1) (2,3)
(2) (1,3)
(3) (1,2)
(1,2,3)
(1,3,2)
so there are 10 elements in the first cycles, 7 in the second cycles and only 1 in the third cycles.
Triangle T(n,k) begins:
1;
3, 1;
10, 7, 1;
45, 37, 13, 1;
236, 241, 101, 21, 1;
1505, 1661, 896, 226, 31, 1;
10914, 13301, 7967, 2612, 442, 43, 1;
90601, 117209, 78205, 29261, 6441, 785, 57, 1;
...
MAPLE
b:= proc(n, l) option remember; `if`(n=0, add(l[i]*
x^i, i=1..nops(l)), add(binomial(n-1, j-1)*
b(n-j, sort([l[], j]))*(j-1)!, j=1..n))
end:
T:= n-> (p-> (seq(coeff(p, x, i), i=1..n)))(b(n, [])):
seq(T(n), n=1..12);
MATHEMATICA
b[n_, l_] := b[n, l] = If[n == 0, l.x^Range[Length[l]], Sum[Binomial[n - 1, j - 1] b[n - j, Sort[Append[l, j]]] (j - 1)!, {j, 1, n}]];
T[n_] := Rest @ CoefficientList[b[n, {}], x];
Array[T, 12] // Flatten (* Jean-François Alcover, Mar 03 2020, after Alois P. Heinz *)
CROSSREFS
Row sums give A001563.
Sequence in context: A117207 A046658 A124574 * A295856 A052964 A084178
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Dec 05 2018
STATUS
approved