OFFSET
0,2
COMMENTS
Row sums are A037965(n+1).
Second column is A048775. - Paul Barry, Oct 01 2010
First column is A001700. - Dan Uznanski, Jan 23 2012
The number of different ordered partitions of n+1 into n+1 bins (as with A001700), such that more than k bins are nonempty. - Dan Uznanski, Jan 23 2012
Second diagonal is A002061. - Franklin T. Adams-Watters, Jan 24 2012
LINKS
Harvey P. Dale, Table of n, a(n) for n = 0..1000
FORMULA
T(n,k) = C(2*n+1,n+1) - (n+1)*Sum_{j=1..k} (Product_{i=0..j-2} (n-i)^2)/((j-1)!*j!).
T(n,k) = [x^(n-k)](1+x)^(n-k)*F(-n-1,-n,1,x/(1+x)). - Paul Barry, Oct 01 2010
T(n,k) = C(2*n+1,n+1) - (n+1)*Sum_{j=1..k} C(n,j-1)^2/j. - M. F. Hasler, Jan 25 2012
EXAMPLE
Triangle begins:
1,
3, 1,
10, 7, 1,
35, 31, 13, 1,
126, 121, 81, 21, 1,
462, 456, 381, 181, 31, 1,
1716, 1709, 1583, 1058, 358, 43, 1
MATHEMATICA
Table[Sum[Binomial[n+j, j+k]Binomial[n-j, k], {j, 0, n-k}], {n, 0, 10}, {k, 0, n}]//Flatten (* Harvey P. Dale, Apr 23 2016 *)
PROG
(PARI) T(n, k)=sum(j=0, n-k, binomial(n+j, j+k)*binomial(n-j, k))
T(n, k)=binomial(2*n+1, n+1)-(n+1)*sum(j=1, k, binomial(n, j-1)^2/j)
A117207(k)=my(n=sqrtint(2*k-sqrtint(2*k))); T(n, k-n*(n+1)/2) \\ M. F. Hasler, Jan 25 2012
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, Mar 02 2006
STATUS
approved