Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Apr 23 2016 08:18:05
%S 1,3,1,10,7,1,35,31,13,1,126,121,81,21,1,462,456,381,181,31,1,1716,
%T 1709,1583,1058,358,43,1,6435,6427,6231,5055,2605,645,57,1,24310,
%U 24301,24013,21661,14605,5785,1081,73,1,92378,92368,91963,87643,70003,38251,11791
%N Number triangle read by rows: T(n,k)=sum{j=0..n-k, C(n+j,j+k)C(n-j,k)}.
%C Row sums are A037965(n+1).
%C Second column is A048775. - _Paul Barry_, Oct 01 2010
%C First column is A001700. - _Dan Uznanski_, Jan 23 2012
%C The number of different ordered partitions of n+1 into n+1 bins (as with A001700), such that more than k bins are nonempty. - _Dan Uznanski_, Jan 23 2012
%C Second diagonal is A002061. - _Franklin T. Adams-Watters_, Jan 24 2012
%H Harvey P. Dale, <a href="/A117207/b117207.txt">Table of n, a(n) for n = 0..1000</a>
%F T(n,k)=C(2n+1,n+1)-sum{j=1..k, product{i=0..j-2, (n-i)^2}/((j-1)!j!)}}*(n+1).
%F T(n,k)=[x^(n-k)](1+x)^(n-k)*F(-n-1,-n,1,x/(1+x)). - _Paul Barry_, Oct 01 2010
%F T(n,k)=C(2n+1,n+1)-(n+1)*sum(j=1,k, C(n,j-1)^2/j). - _M. F. Hasler_, Jan 25 2012
%e Triangle begins
%e 1,
%e 3, 1,
%e 10, 7, 1,
%e 35, 31, 13, 1,
%e 126, 121, 81, 21, 1,
%e 462, 456, 381, 181, 31, 1,
%e 1716, 1709, 1583, 1058, 358, 43, 1
%t Table[Sum[Binomial[n+j,j+k]Binomial[n-j,k],{j,0,n-k}],{n,0,10},{k,0,n}]//Flatten (* _Harvey P. Dale_, Apr 23 2016 *)
%o (PARI) T(n,k)=sum(j=0,n-k, binomial(n+j,j+k)*binomial(n-j,k))
%o T(n,k)=binomial(2*n+1,n+1)-(n+1)*sum(j=1,k, binomial(n,j-1)^2/j)
%o A117207(k)=my(n=sqrtint(2*k-sqrtint(2*k))); T(n,k-n*(n+1)/2) \\ _M. F. Hasler_, Jan 25 2012
%K easy,nonn,tabl
%O 0,2
%A _Paul Barry_, Mar 02 2006