login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117209
G.f. A(x) satisfies 1/(1-x) = Product_{k>=1} A(x^k).
23
1, 1, 0, -1, -1, -1, 0, 0, 0, 0, 1, 0, 0, -1, 0, 1, 2, -1, -1, -2, 0, 1, 3, -1, 0, -1, 1, -1, 1, -3, 1, -1, 1, -2, 3, 0, 6, -1, -1, -6, 2, -4, 4, -3, 2, -4, 6, -5, 6, -2, 7, -5, 4, -13, 5, -3, 11, -6, 8, -14, 10, -6, 9, -14, 11, -14, 15, -13, 9, -15, 24, -13, 19, -21, 12, -20, 27, -24, 21, -26, 22, -24, 33, -33, 32, -26
OFFSET
0,17
COMMENTS
Self-convolution inverse is A117208.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Paul D. Hanna)
N. J. A. Sloane, Transforms
FORMULA
G.f.: A(x) = exp( Sum_{n>=1} A023900(n)*x^n/n ), where A023900 is the Dirichlet inverse of Euler totient function.
Euler transform of the Möbius function A008683. - Stuart Clary, Franklin T. Adams-Watters and Vladeta Jovovic, Apr 15 2006
G.f.: A(x) = Product_{k>=1}(1 - x^k)^(-mu(k)) where mu(k) is the Möbius function, A008683. - Stuart Clary and Franklin T. Adams-Watters, Apr 15 2006
G.f.: A(x) = Product_{k>=1} (1 + x^(2*k-1))^mu(2*k-1), where mu() is the Moebius function. - Seiichi Manyama, Jul 06 2024
MATHEMATICA
nmax = 85; CoefficientList[ Series[ Product[ (1 - x^k)^(-MoebiusMu[k]), {k, 1, nmax} ], {x, 0, nmax} ], x ] (* Stuart Clary, Apr 15 2006 *)
PROG
(PARI) {a(n)=polcoeff(exp(sum(k=1, n+1, sumdiv(k, d, d*moebius(d))*x^k/k)+x*O(x^n)), n)}
CROSSREFS
Cf. A023900 (l.g.f.), A117208 (inverse); variants: A117210, A117211, A117212.
Cf. A008683.
Sequence in context: A342149 A224326 A096496 * A035192 A229653 A089062
KEYWORD
sign
AUTHOR
Paul D. Hanna, Mar 03 2006
STATUS
approved