The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A117209 G.f. A(x) satisfies 1/(1-x) = product_{n>=1} A(x^n). 22
 1, 1, 0, -1, -1, -1, 0, 0, 0, 0, 1, 0, 0, -1, 0, 1, 2, -1, -1, -2, 0, 1, 3, -1, 0, -1, 1, -1, 1, -3, 1, -1, 1, -2, 3, 0, 6, -1, -1, -6, 2, -4, 4, -3, 2, -4, 6, -5, 6, -2, 7, -5, 4, -13, 5, -3, 11, -6, 8, -14, 10, -6, 9, -14, 11, -14, 15, -13, 9, -15, 24, -13, 19, -21, 12, -20, 27, -24, 21, -26, 22, -24, 33, -33, 32, -26 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,17 COMMENTS Self-convolution inverse is A117208. LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Paul D. Hanna) N. J. A. Sloane, Transforms FORMULA G.f.: A(x) = exp( Sum_{n>=1} A023900(n)*x^n/n ), where A023900 is the Dirichlet inverse of Euler totient function. Euler transform of the Möbius function A008683. - Stuart Clary, Franklin T. Adams-Watters and Vladeta Jovovic, Apr 15 2006 G.f.: A(x) = product_{k>=1}(1 - x^k)^(-mu(k)) where mu(k) is the Möbius function, A008683. - Stuart Clary and Franklin T. Adams-Watters, Apr 15 2006 MATHEMATICA nmax = 85; CoefficientList[ Series[ Product[ (1 - x^k)^(-MoebiusMu[k]), {k, 1, nmax} ], {x, 0, nmax} ], x ] (* Stuart Clary, Apr 15 2006 *) PROG (PARI) {a(n)=polcoeff(exp(sum(k=1, n+1, sumdiv(k, d, d*moebius(d))*x^k/k)+x*O(x^n)), n)} CROSSREFS Cf. A023900 (l.g.f.), A117208 (inverse); variants: A117210, A117211, A117212. Cf. A008683. Sequence in context: A342149 A224326 A096496 * A035192 A229653 A089062 Adjacent sequences: A117206 A117207 A117208 * A117210 A117211 A117212 KEYWORD sign AUTHOR Paul D. Hanna, Mar 03 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 21 03:13 EST 2024. Contains 370219 sequences. (Running on oeis4.)