login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A035192 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 10. 21
1, 1, 2, 1, 1, 2, 0, 1, 3, 1, 0, 2, 2, 0, 2, 1, 0, 3, 0, 1, 0, 0, 0, 2, 1, 2, 4, 0, 0, 2, 2, 1, 0, 0, 0, 3, 2, 0, 4, 1, 2, 0, 2, 0, 3, 0, 0, 2, 1, 1, 0, 2, 2, 4, 0, 0, 0, 0, 0, 2, 0, 2, 0, 1, 2, 0, 2, 0, 0, 0, 2, 3, 0, 2, 2, 0, 0, 4, 2, 1, 5 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Coefficients of Dedekind zeta function for the quadratic number field of discriminant 40. See A002324 for formula and Maple code. - N. J. A. Sloane, Mar 22 2022

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

MATHEMATICA

a[n_] := If[n < 0, 0, DivisorSum[n, KroneckerSymbol[10, #] &]]; Table[ a[n], {n, 1, 100}] (* G. C. Greubel, Apr 27 2018 *)

PROG

(PARI) m=10; direuler(p=2, 101, 1/(1-(kronecker(m, p)*(X-X^2))-X))

CROSSREFS

Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.

Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.

Sequence in context: A224326 A096496 A117209 * A229653 A089062 A282634

Adjacent sequences:  A035189 A035190 A035191 * A035193 A035194 A035195

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 17 07:26 EDT 2022. Contains 353741 sequences. (Running on oeis4.)