login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035182
Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s) + Kronecker(m,p)*p^(-2s))^(-1) for m = -7.
30
1, 2, 0, 3, 0, 0, 1, 4, 1, 0, 2, 0, 0, 2, 0, 5, 0, 2, 0, 0, 0, 4, 2, 0, 1, 0, 0, 3, 2, 0, 0, 6, 0, 0, 0, 3, 2, 0, 0, 0, 0, 0, 2, 6, 0, 4, 0, 0, 1, 2, 0, 0, 2, 0, 0, 4, 0, 4, 0, 0, 0, 0, 1, 7, 0, 0, 2, 0, 0, 0, 2, 4, 0, 4, 0, 0, 2, 0, 2, 0, 1, 0, 0, 0, 0, 4, 0, 8, 0, 0, 0, 6, 0, 0, 0, 0, 0, 2, 2, 3, 0, 0, 0, 0, 0
OFFSET
1,2
COMMENTS
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^2 + 5*v^2 + 4*w^2 - 8*v*w - 4*u*v + 2*u*w + v - w. - Michael Somos, Jul 21 2004
Half of the number of integer solutions to x^2 + x*y + 2*y^2 = n. - Michael Somos, Jun 05 2005
Inverse Moebius transform of A175629. - Jianing Song, Sep 07 2018
Coefficients of Dedekind zeta function for the quadratic number field of discriminant -7. See A002324 for formula and Maple code. - N. J. A. Sloane, Mar 22 2022
LINKS
FORMULA
a(n) is multiplicative with a(7^e) = 1, a(p^e) = e + 1 if p == 1, 2, 4 (mod 7), a(p^e) = (1 + (-1)^e) / 2 if p == 3, 5, 6 (mod 7). - Michael Somos, May 28 2005
2 * a(n) = A002652(n) unless n = 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(7) = 1.187410... (A326919). - Amiram Eldar, Oct 11 2022
EXAMPLE
G.f. = x + 2*x^2 + 3*x^4 + x^7 + 4*x^8 + x^9 + 2*x^11 + 2*x^14 + 5*x^16 + ...
MATHEMATICA
a[ n_] := If[ n < 1, 0, Sum[ KroneckerSymbol[ -7, d], { d, Divisors[ n]}]]; (* Michael Somos, Jan 23 2014 *)
a[ n_] := If[ n < 1, 0, Length @ FindInstance[ n == x^2 + x y + 2 y^2, {x, y}, Integers, 10^9] / 2]; (* Michael Somos, Jan 23 2014 *)
a[ n_] := If[ n < 1, 0, DivisorSum[ n, KroneckerSymbol[ -7, #] &]]; (* Michael Somos, Jun 10 2015 *)
PROG
(PARI) {a(n) = my(A, p, e); if( n<0, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; [ !(e%2), 1, e+1] [kronecker( -7, p) + 2]))}; \\ Michael Somos, May 28 2005
(PARI) {a(n) = if( n<1, 0, qfrep([ 2, 1; 1, 4], n, 1)[n])}; \\ Michael Somos, Jun 05 2005
(PARI) {a(n) = if( n<1, 0, direuler( p=2, n, 1 / ((1 - X) * (1 - kronecker( -7, p)*X)))[n])}; \\ Michael Somos, Jun 05 2005
(Magma) A := Basis( ModularForms( Gamma1(14), 1), 106); B<q> := (-1 + A[1] + 2*A[2] + 4*A[3] + 6*A[5]) / 2; B; // Michael Somos, Jun 10 2015
CROSSREFS
Moebius transform gives A175629.
Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.
Sequence in context: A109362 A085246 A268726 * A280720 A245964 A141700
KEYWORD
nonn,mult
STATUS
approved