login
A035183
Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -5.
5
1, 0, 2, 1, 1, 0, 2, 0, 3, 0, 0, 2, 0, 0, 2, 1, 0, 0, 0, 1, 4, 0, 2, 0, 1, 0, 4, 2, 2, 0, 0, 0, 0, 0, 2, 3, 0, 0, 0, 0, 2, 0, 2, 0, 3, 0, 2, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 6, 1, 0, 0, 2, 0, 4, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 5
OFFSET
1,3
LINKS
FORMULA
From Amiram Eldar, Oct 17 2022: (Start)
a(n) = Sum_{d|n} Kronecker(-5, d).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/(3*sqrt(5)) = 0.936641... . (End)
Multiplicative with a(5^e) = 1, a(p^e) = (1+(-1)^e)/2 if Kronecker(-5, p) = -1 (p is in A296923), and a(p^e) = e+1 if Kronecker(-5, p) = 1 (p is in A139513). - Amiram Eldar, Nov 20 2023
MATHEMATICA
a[n_] := If[n < 0, 0, DivisorSum[n, KroneckerSymbol[-5, #] &]]; Table[ a[n], {n, 1, 100}] (* G. C. Greubel, Apr 27 2018 *)
PROG
(PARI) my(m=-5); direuler(p=2, 101, 1/(1-(kronecker(m, p)*(X-X^2))-X))
(PARI) a(n) = sumdiv(n, d, kronecker(-5, d)); \\ Michel Marcus, Oct 07 2023
CROSSREFS
Sequence in context: A176451 A091297 A166712 * A178101 A324831 A054522
KEYWORD
nonn,easy,mult
STATUS
approved