login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035186
Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 3.
5
1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 2, 1, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 1, 2, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 1, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 1, 0, 0, 0, 0, 2, 0, 2, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1
OFFSET
1,11
LINKS
FORMULA
From Amiram Eldar, Oct 17 2022: (Start)
a(n) = Sum_{d|n} Kronecker(3, d).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*log(2+sqrt(3)) / (3*sqrt(3)) = 0.506897... . (End)
Multiplicative with a(3^e) = 1, a(p^e) = (1+(-1)^e)/2 if Kronecker(3, p) = -1 (p is in A038875), and a(p^e) = e+1 if Kronecker(3, p) = 1 (p is in A097933). - Amiram Eldar, Nov 20 2023
MATHEMATICA
a[n_] := If[n < 0, 0, DivisorSum[n, KroneckerSymbol[3, #] &]]; Table[ a[n], {n, 1, 100}] (* G. C. Greubel, Apr 27 2018 *)
PROG
(PARI) my(m=3); direuler(p=2, 101, 1/(1-(kronecker(m, p)*(X-X^2))-X))
(PARI) a(n) = sumdiv(n, d, kronecker(3, d)); \\ Amiram Eldar, Nov 20 2023
CROSSREFS
Sequence in context: A035179 A035161 A352565 * A035194 A245818 A161491
KEYWORD
nonn,easy,mult
STATUS
approved