login
A035185
Number of divisors of n == 1 or 7 (mod 8) minus number of divisors of n == 3 or 5 (mod 8).
31
1, 1, 0, 1, 0, 0, 2, 1, 1, 0, 0, 0, 0, 2, 0, 1, 2, 1, 0, 0, 0, 0, 2, 0, 1, 0, 0, 2, 0, 0, 2, 1, 0, 2, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 2, 0, 3, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 2, 1, 0, 0, 0, 2, 0, 0, 2, 1, 2, 0, 0, 0, 0, 0, 2, 0, 1, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 2, 0, 0, 2, 3, 0, 1, 0, 0, 2, 0, 0
OFFSET
1,7
COMMENTS
Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s) + Kronecker(m,p)*p^(-2s))^(-1) for m = 2.
Let zetaQ(sqrt(2))(s) = Sum (1/(Z(sqrt(2)):A)^s), a Dedekind zeta function, where A runs through the nonzero ideals of Z(sqrt(2)) and where (Z(sqrt(2)):A) is the norm of A; then zetaQ(sqrt(2))(s) = Sum_{n>=1}, a(n)/n^s); Sum{k=1..n} a(k) is asymptotic to c*n where c = log(1 + sqrt(2))/sqrt(2). - Benoit Cloitre, Jan 01 2003
Inverse Moebius transform of A091337.
a(n) is the number of solutions to the equation n = x^2 - 2*y^2 in integers where -x < 2*y <= x. [Uspensky and Heaslet] - Michael Somos, Feb 17 2020
Coefficients of Dedekind zeta function for the quadratic number field of discriminant 8. See A002324 for formula and Maple code. - N. J. A. Sloane, Mar 22 2022
REFERENCES
J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 368.
LINKS
M. Baake and R. V. Moody, Similarity submodules and root systems in four dimensions, arXiv:math/9904028 [math.MG], 1999.
M. Baake and R. V. Moody, Similarity submodules and root systems in four dimensions, Canad. J. Math. 51 (1999), 1258-1276.
FORMULA
G.f.: Sum_{k>0} x^k * (1 - x^(2*k)) / (1 + x^(4*k)).
-(-1)^(n*(n-1)/2)*a(n) = Sum_{n >= 1} (-1)^n * q^(n*(n+1)/2)*(1-q)*(1-q^2)*...*(1-q^(n-1))/ ((1+q)*(1+q^2)*...*(1+q^n)). - Jeremy Lovejoy, Jun 12 2009
a(n) = (-1)^floor(n/2) * A259829(n). - Michael Somos, Jul 06 2015
a(n) is multiplicative with a(2^e) = 1, a(p^e) = (1 + (-1)^e) / 2 if p == 3, 5 (mod 8), a(p^e) = e + 1 if p == 1, 7 (mod 8). - Jianing Song, Sep 07 2018
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = log(sqrt(2)+1)/sqrt(2) = A091648/A002193 = 0.623225... . - Amiram Eldar, Oct 11 2022
EXAMPLE
G.f. = x + x^2 + x^4 + 2*x^7 + x^8 + x^9 + 2*x^14 + x^16 + 2*x^17 + x^18 + ...
a(7) = 2 because 7 = 3^2 - 2*(+1)^2 = 3^2 - 2*(-1)^2. - Michael Somos, Feb 17 2020
MATHEMATICA
a[ n_] := If[ n < 1, 0, DivisorSum[ n, KroneckerSymbol[ 2, #] &]]; (* Michael Somos, Jul 06 2015 *)
a[ n_] := SeriesCoefficient[ Sum[ x^k (1 - x^(2 k)) / (1 + x^(4 k)), {k, n}], {x, 0, n}]; (* Michael Somos, Jul 06 2015 *)
a[ n_] := If[ n < 1, 0, Times @@ (Which[ # <= 2, 1, Mod[#, 8] > 1 && Mod[#, 8] < 7, 1 - Mod[#2, 2], True, #2 + 1] & @@@ FactorInteger @ n)]; (* Michael Somos, Jul 06 2015 *)
PROG
(PARI) {a(n) = if( n<1, 0, sumdiv(n, d, kronecker(2, d)))};
(PARI) {a(n) = if( n<1, 0, direuler(p=2, n, 1 / ((1 - X) * (1 - kronecker(2, p)*X)))[n])};
(PARI) {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if(p==2, 1, p%8>1 && p%8<7, !(e%2), e+1)))}; \\ Michael Somos, Aug 17 2006
(PARI) {a(n) = if( n<1, 0, polcoeff( sum(k=1, n, x^k * (1 - x^(2*k)) / (1 + x^(4*k)), x * O(x^n)), n))}; \\ Michael Somos, Jul 06 2015
CROSSREFS
Moebius transform gives A091337.
Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.
Sequence in context: A138158 A057276 A259829 * A339659 A338971 A244600
KEYWORD
nonn,mult
STATUS
approved