OFFSET
0,1
COMMENTS
Asymptotic growth constant in the exponent for the number of spanning trees on the 2 X infinity strip on the square lattice. - R. J. Mathar, May 14 2006
Arccosh(sqrt(2)) = (1/2)*log((sqrt(2)+1)/(sqrt(2)-1)) = log(tan(3*Pi/8)) = int(1/cos(x),x=0..Pi/4). Therefore, in Gerardus Mercator's (conformal) map this is the value of the ordinate y/R (R radius of the spherical earth) for latitude phi = 45 degrees north, or Pi/4. See, e.g., the Eli Maor reference, eqs. (5) and (6). This is the latitude of, e.g., the Mission Point Lighthouse, Michigan, U.S.A. - Wolfdieter Lang, Mar 05 2013
Decimal expansion of the arclength on the hyperbola y^2 - x^2 = 1 from (0,0) to (1,sqrt(2)). - Clark Kimberling, Jul 04 2020
REFERENCES
L. B. W. Jolley, Summation of Series, Dover (1961), Eq. (85) page 16-17.
E. Maor, Trigonometric Delights, Princeton University Press, NJ, 1998, chapter 13, A Mapmaker's Paradise, pp. 163-180.
Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 30, equation 30:10:4 at page 283.
LINKS
Ivan Panchenko, Table of n, a(n) for n = 0..1000
E. D. Krupnikov, K. S. Kölbig, Some special cases of the generalized hypergeometric function (q+1)Fq, J. Comp. Appl. Math. 78 (1997) 79-95.
D. H. Lehmer, Interesting Series Involving the Central Binomial Coefficient, Am. Math. Monthly 92 (1985) 449.
R. Shrock and F. Y. Wu, Spanning trees on graphs and lattices in d dimensions, J Phys A: Math Gen 33 (2000) 3881-3902.
Eric Weisstein's World of Mathematics, Hyperbolic Secant.
Eric Weisstein's World of Mathematics, Universal Parabolic Constant.
FORMULA
Equals log(1 + sqrt(2)). - Jonathan Sondow, Mar 15 2005
Equals (1/2)*log(3+2*sqrt(2)) = A244920/2. - R. J. Mathar, May 14 2006
Equals Sum_{n>=1, n odd} binomial(2*n,n)/(n*4^n) [see Lehmer link]. - R. J. Mathar, Mar 04 2009
Equals arcsinh(1), since arcsinh(x) = log(x+sqrt(x^2+1)). - Stanislav Sykora, Nov 01 2013
Equals asin(i)/i. - L. Edson Jeffery, Oct 19 2014
Equals (Pi/4) * 3F2(1/4, 1/2, 3/4; 1, 3/2; 1). - Jean-François Alcover, Apr 23 2015
Equals arctanh(sqrt(2)/2). - Amiram Eldar, Apr 22 2022
Equals lim_{n->oo} Sum_{k=1..n} 1/sqrt(n^2+k^2). - Amiram Eldar, May 19 2022
Equals Sum_{n >= 1} 1/(n*P(n, sqrt(2))*P(n-1, sqrt(2))), where P(n, x) denotes the n-th Legendre polynomial. The first twenty terms of the series gives the approximate value 0.88137358701954(24...), correct to 14 decimal places. - Peter Bala, Mar 16 2024
Equals 2F1(1/2,1/2;3/2;-1) [Krupnikov]. - R. J. Mathar, May 13 2024
EXAMPLE
0.8813735870195430252326093249797923090281603282616...
MATHEMATICA
RealDigits[Log[1 + Sqrt[2]], 10, 100][[1]] (* Alonso del Arte, Aug 11 2011 *)
PROG
(Maxima) fpprec : 100$ ev(bfloat(log(1 + sqrt(2)))); /* Martin Ettl, Oct 17 2012 */
(PARI) asinh(1) \\ Michel Marcus, Oct 19 2014
CROSSREFS
KEYWORD
AUTHOR
Eric W. Weisstein, Jan 24 2004
STATUS
approved