login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A091648 Decimal expansion of arccosh(sqrt(2)), the inflection point of sech(x). 24
8, 8, 1, 3, 7, 3, 5, 8, 7, 0, 1, 9, 5, 4, 3, 0, 2, 5, 2, 3, 2, 6, 0, 9, 3, 2, 4, 9, 7, 9, 7, 9, 2, 3, 0, 9, 0, 2, 8, 1, 6, 0, 3, 2, 8, 2, 6, 1, 6, 3, 5, 4, 1, 0, 7, 5, 3, 2, 9, 5, 6, 0, 8, 6, 5, 3, 3, 7, 7, 1, 8, 4, 2, 2, 2, 0, 2, 6, 0, 8, 7, 8, 3, 3, 7, 0, 6, 8, 9, 1, 9, 1, 0, 2, 5, 6, 0, 4, 2, 8, 5, 6 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Asymptotic growth constant in the exponent for the number of spanning trees on the 2 X infinity strip on the square lattice. - R. J. Mathar, May 14 2006

Arccosh(sqrt(2)) = (1/2)*log((sqrt(2)+1)/(sqrt(2)-1)) = log(tan(3*Pi/8)) = int(1/cos(x),x=0..Pi/4). Therefore, in Gerardus Mercator's (conformal) map this is the value of the ordinate y/R (R radius of the spherical earth) for latitude phi = 45 degrees north, or Pi/4. See, e.g., the Eli Maor reference, eqs. (5) and (6). This is the latitude of, e.g., the Mission Point Lighthouse, Michigan, U.S.A. - Wolfdieter Lang, Mar 05 2013

Decimal expansion of the arclength on the hyperbola y^2 - x^2 = 1 from (0,0) to (1,sqrt(2)). - Clark Kimberling, Jul 04 2020

REFERENCES

L. B. W. Jolley, Summation of Series, Dover (1961), Eq. (85) page 16-17.

E. Maor, Trigonometric Delights, Princeton University Press, NJ, 1998, chapter 13, A Mapmaker's Paradise, pp. 163-180.

LINKS

Ivan Panchenko, Table of n, a(n) for n = 0..1000

D. H. Lehmer, Interesting Series Involving the Central Binomial Coefficient, Am. Math. Monthly 92 (1985) 449.

R. Shrock and F. Y. Wu, Spanning trees on graphs and lattices in d dimensions, J Phys A: Math Gen 33 (2000) 3881-3902.

Eric Weisstein's World of Mathematics, Hyperbolic Secant.

Eric Weisstein's World of Mathematics, Universal Parabolic Constant.

FORMULA

Equals log(1 + sqrt(2)). - Jonathan Sondow, Mar 15 2005

Equals (1/2)*log(3+2*sqrt(2)). - R. J. Mathar, May 14 2006

Equals Sum_{n>=1, n odd} binomial(2*n,n)/(n*4^n) [see Lehmer link]. - R. J. Mathar, Mar 04 2009

Equals arcsinh(1), since arcsinh(x) = log(x+sqrt(x^2+1)). - Stanislav Sykora, Nov 01 2013

Equals asin(i)/i. - L. Edson Jeffery, Oct 19 2014

Equals (Pi/4) * 3F2(1/4, 1/2, 3/4; 1, 3/2; 1). - Jean-Fran├žois Alcover, Apr 23 2015

Equals arctanh(sqrt(2)/2). - Amiram Eldar, Apr 22 2022

Equals lim_{n->oo} Sum_{k=1..n} 1/sqrt(n^2+k^2). - Amiram Eldar, May 19 2022

EXAMPLE

0.8813735870195430252326093249797923090281603282616...

MATHEMATICA

RealDigits[Log[1 + Sqrt[2]], 10, 100][[1]] (* Alonso del Arte, Aug 11 2011 *)

PROG

(Maxima) fpprec : 100$ ev(bfloat(log(1 + sqrt(2)))); /* Martin Ettl, Oct 17 2012 */

(PARI) asinh(1) \\ Michel Marcus, Oct 19 2014

CROSSREFS

Cf. A103710, A103711, A103712, A181048.

Sequence in context: A176155 A174127 A230153 * A135707 A021923 A296496

Adjacent sequences:  A091645 A091646 A091647 * A091649 A091650 A091651

KEYWORD

nonn,cons,easy

AUTHOR

Eric W. Weisstein, Jan 24 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 6 12:26 EDT 2022. Contains 355110 sequences. (Running on oeis4.)