login
A035175
Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -15.
26
1, 2, 1, 3, 1, 2, 0, 4, 1, 2, 0, 3, 0, 0, 1, 5, 2, 2, 2, 3, 0, 0, 2, 4, 1, 0, 1, 0, 0, 2, 2, 6, 0, 4, 0, 3, 0, 4, 0, 4, 0, 0, 0, 0, 1, 4, 2, 5, 1, 2, 2, 0, 2, 2, 0, 0, 2, 0, 0, 3, 2, 4, 0, 7, 0, 0, 0, 6, 2, 0, 0, 4, 0, 0, 1, 6, 0, 0, 2, 5, 1, 0, 2, 0, 2, 0, 0, 0, 0, 2, 0, 6, 2, 4, 2, 6, 0, 2, 0, 3, 0, 4, 0, 0, 0
OFFSET
1,2
COMMENTS
Coefficients of Dedekind zeta function for the quadratic number field of discriminant -15. See A002324 for formula and Maple code. - N. J. A. Sloane, Mar 22 2022
LINKS
FORMULA
From Michael Somos, Aug 25 2006: (Start)
Expansion of -1 + (eta(q^3) * eta(q^5))^2 / (eta(q) * eta(q^15)) in powers of q.
Euler transform of period 15 sequence [ 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -2, ...]. if a(0)=1.
Moebius transform is period 15 sequence [ 1, 1, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, -1, -1, 0, ...].
Given g.f. A(x), then B(x) = 1 + A(x) satisfies 0 = f(B(x), B(x^2), B(x^4)) where f(u, v, w) = -v^3 + 4*u*v*w - 2*u*w^2 - u^2*w.
G.f.: -1 + x * Product_{k>0} ((1 - x^(3*k)) * (1 - x^(5*k)))^2 / ((1 - x^k) * (1 - x^(15*k))).
G.f.: -1 + (1/2) * (Sum_{n,m} x^(n^2 + n*m + 4*m^2) + x^(2*n^2 + n*m + 2*m^2)).
a(n) is multiplicative with a(3^e) = a(5^e) = 1, a(p^e) = (1+(-1)^e)/2 if p == 7, 11, 13, 14 (mod 15), a(p^e) = e+1 if p == 1, 2, 4, 8 (mod 15).
a(15*n + 7) = a(15*n + 11) = a(15*n + 13) = a(15*n + 14) = 0.
a(3*n) = a(n). a(n) = |A106406(n)| unless n=0. a(n) = A123864(n) unless n=0. (End)
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/sqrt(15) = 1.622311... . - Amiram Eldar, Oct 11 2022
EXAMPLE
q + 2*q^2 + q^3 + 3*q^4 + q^5 + 2*q^6 + 4*q^8 + q^9 + 2*q^10 +...
MATHEMATICA
QP = QPochhammer; s = (QP[q^3]*QP[q^5])^2/(QP[q]*QP[q^15])/q - 1/q + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Nov 30 2015, adapted from PARI *)
a[n_] := If[n < 0, 0, DivisorSum[n, KroneckerSymbol[-15, #] &]]; Table[a[n], {n, 1, 100}] (* G. C. Greubel, Jul 17 2018 *)
PROG
(PARI) m = -15; direuler(p=2, 101, 1/(1-(kronecker(m, p)*(X-X^2))-X))
(PARI) {a(n)=if(n<1, 0, sumdiv(n, d, kronecker(-15, d)))} \\ Michael Somos, Aug 25 2006
(PARI) {a(n)=local(A, p, e); if(n<1, 0, A=factor(n); prod(k=1, matsize(A)[1], if(p=A[k, 1], e=A[k, 2]; if(p==3||p==5, 1, if((p%15)!=2^valuation(p%15, 2), (e+1)%2, (e+1))))))} \\ Michael Somos, Aug 25 2006
(PARI) {a(n)=if(n<1, 0, (qfrep([2, 1; 1, 8], n, 1)+qfrep([4, 1; 1, 4], n, 1))[n])} \\ Michael Somos, Aug 25 2006
(PARI) {a(n)=local(A); if(n<1, 0, A=x*O(x^n); polcoeff( eta(x^3+A)^2*eta(x^5+A)^2/eta(x+A)/eta(x^15+A), n))} \\ Michael Somos, Aug 25 2006
CROSSREFS
Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.
Sequence in context: A324817 A106406 A123864 * A092412 A265578 A279288
KEYWORD
nonn,mult
STATUS
approved