login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279288
a(n) = denominator of (phi(n)/tau(n)).
4
1, 2, 1, 3, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 5, 1, 1, 1, 3, 1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 5, 1, 3, 1, 1, 1, 4, 1, 1, 1, 1, 1, 3, 1, 2, 1, 7, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 5, 5, 1, 1, 1, 1, 2, 1
OFFSET
1,2
COMMENTS
a(n) = denominator of (A000010(n)/A000005(n)).
See A279287 (numerator of (phi(n)/tau(n))) and A063070 (phi(n)-tau(n)).
a(n) = 1 and A279287(n) = 1 for numbers n in A020488; A279287(n) > a(n) for numbers n in A279289.
LINKS
FORMULA
a(n) = 1 for numbers in A020491.
EXAMPLE
For n = 6: phi(6)/tau(6) = 2/4 = 1/2; a(6) = 2.
MATHEMATICA
Table[Denominator[EulerPhi[n]/DivisorSigma[0, n]], {n, 120}] (* Michael De Vlieger, Dec 10 2016 *)
PROG
(Magma) [Denominator(EulerPhi(n)/NumberOfDivisors(n)): n in[1..1000]]
(PARI) a(n) = denominator(eulerphi(n)/numdiv(n)) \\ Felix Fröhlich, Dec 09 2016
KEYWORD
nonn,frac
AUTHOR
Jaroslav Krizek, Dec 09 2016
STATUS
approved