login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = denominator of (phi(n)/tau(n)).
4

%I #17 Sep 08 2022 08:46:18

%S 1,2,1,3,1,2,1,1,1,1,1,3,1,2,1,5,1,1,1,3,1,2,1,1,3,1,2,1,1,1,1,3,1,1,

%T 1,3,1,2,1,1,1,2,1,3,1,2,1,5,1,3,1,1,1,4,1,1,1,1,1,3,1,2,1,7,1,2,1,3,

%U 1,1,1,1,1,1,3,1,1,1,1,5,5,1,1,1,1,2,1

%N a(n) = denominator of (phi(n)/tau(n)).

%C a(n) = denominator of (A000010(n)/A000005(n)).

%C See A279287 (numerator of (phi(n)/tau(n))) and A063070 (phi(n)-tau(n)).

%C a(n) = 1 and A279287(n) = 1 for numbers n in A020488; A279287(n) > a(n) for numbers n in A279289.

%H Jaroslav Krizek, <a href="/A279288/b279288.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = 1 for numbers in A020491.

%e For n = 6: phi(6)/tau(6) = 2/4 = 1/2; a(6) = 2.

%t Table[Denominator[EulerPhi[n]/DivisorSigma[0, n]], {n, 120}] (* _Michael De Vlieger_, Dec 10 2016 *)

%o (Magma) [Denominator(EulerPhi(n)/NumberOfDivisors(n)): n in[1..1000]]

%o (PARI) a(n) = denominator(eulerphi(n)/numdiv(n)) \\ _Felix Fröhlich_, Dec 09 2016

%Y Cf. A000005, A000010, A020488, A020490, A020491, A063070, A279287, A279289.

%K nonn,frac

%O 1,2

%A _Jaroslav Krizek_, Dec 09 2016