login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279287
a(n) = numerator of (phi(n)/tau(n)).
4
1, 1, 1, 2, 2, 1, 3, 1, 2, 1, 5, 2, 6, 3, 2, 8, 8, 1, 9, 4, 3, 5, 11, 1, 20, 3, 9, 2, 14, 1, 15, 8, 5, 4, 6, 4, 18, 9, 6, 2, 20, 3, 21, 10, 4, 11, 23, 8, 14, 10, 8, 4, 26, 9, 10, 3, 9, 7, 29, 4, 30, 15, 6, 32, 12, 5, 33, 16, 11, 3, 35, 2, 36, 9, 20, 6, 15, 3
OFFSET
1,4
COMMENTS
a(n) = numerator of (A000010(n)/A000005(n)).
See A279288 (denominator of (phi(n)/tau(n))) and A063070 (phi(n)-tau(n)).
a(n) = 1 and A279288(n) = 1 for numbers n in A020488; a(n) > A279288(n) for numbers n in A279289.
LINKS
EXAMPLE
For n = 6: phi(6)/tau(6) = 2/4 = 1/2; a(6) = 1.
MAPLE
with(numtheory): A279287:=n->numer(phi(n)/sigma(n)): seq(A279287(n), n=1..150); # Wesley Ivan Hurt, Dec 11 2016
MATHEMATICA
Table[Numerator[EulerPhi[n]/DivisorSigma[0, n]], {n, 78}] (* Michael De Vlieger, Dec 09 2016 *)
PROG
(Magma) [Numerator(EulerPhi(n)/NumberOfDivisors(n)): n in[1..1000]]
(PARI) a(n) = numerator(eulerphi(n)/numdiv(n)) \\ Felix Fröhlich, Dec 09 2016
KEYWORD
nonn,frac
AUTHOR
Jaroslav Krizek, Dec 09 2016
STATUS
approved