login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135352
Period 5: repeat [1,2,2,1,3].
2
1, 2, 2, 1, 3, 1, 2, 2, 1, 3, 1, 2, 2, 1, 3, 1, 2, 2, 1, 3, 1, 2, 2, 1, 3, 1, 2, 2, 1, 3, 1, 2, 2, 1, 3, 1, 2, 2, 1, 3, 1, 2, 2, 1, 3, 1, 2, 2, 1, 3, 1, 2, 2, 1, 3, 1, 2, 2, 1, 3, 1, 2, 2, 1, 3, 1, 2, 2, 1, 3, 1, 2, 2, 1, 3, 1, 2, 2, 1, 3, 1, 2, 2, 1, 3, 1, 2, 2, 1, 3, 1, 2, 2, 1, 3
OFFSET
1,2
COMMENTS
This sequence (if extended to be bi-infinite) is the quiddity sequence of the unique width-5 Coxeter frieze pattern A139434; equivalently, if one goes around the (uniquely) triangulated regular pentagon and sequentially looks at its vertices, counting the number of triangles incident with each vertex, then this sequence will be obtained. - Andrey Zabolotskiy, May 04 2023
LINKS
Karin Baur, Frieze Patterns of Integers, Math. Intelligencer 43, 47-54 (2021). See Example 2 and Figure 4.
CROSSREFS
Sequence in context: A283196 A238882 A279287 * A320040 A072528 A368060
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Feb 16 2008
EXTENSIONS
Edited by Joerg Arndt, Oct 11 2016
Initial term 1 removed by Joerg Arndt, May 04 2023
STATUS
approved