|
|
A135351
|
|
a(n) = (2^n + 3 - 7*(-1)^n + 3*0^n)/6; or a(0) = 0 and for n > 0, a(n) = A005578(n-1) - (-1)^n.
|
|
5
|
|
|
0, 2, 0, 3, 2, 7, 10, 23, 42, 87, 170, 343, 682, 1367, 2730, 5463, 10922, 21847, 43690, 87383, 174762, 349527, 699050, 1398103, 2796202, 5592407, 11184810, 22369623, 44739242, 89478487, 178956970, 357913943, 715827882, 1431655767, 2863311530, 5726623063, 11453246122, 22906492247, 45812984490
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
G.f.: x*(2 - 4*x + x^2)/((1-x^2)*(1-2*x)).
E.g.f.: (exp(2*x) + 3*exp(x) - 7*exp(-x) + 3)/6.
a(n) + (period 2 sequence: repeat [1, -2]) = A328284(n+2).
a(n+1) + (period 2 sequence: repeat [-2, 1]) = A001045(n).
a(n+1) + (period 2 sequence: repeat [-1, 0]) = A078008(n).
a(n+1) + (period 2 sequence : repeat [-3, 2]) = -(-1)^n*A084247(n).
|
|
MAPLE
|
G(x):=x*(2 - 4*x + x^2)/((1-x^2)*(1-2*x)): f[0]:=G(x): for n from 1 to 30 do f[n]:=diff(f[n-1], x) od: x:=0: seq(f[n]/n!, n=0..30);
|
|
MATHEMATICA
|
Join[{0}, Table[(2^n +3 -7*(-1)^n)/6, {n, 40}]] (* G. C. Greubel, Oct 11 2016 *)
LinearRecurrence[{2, 1, -2}, {0, 2, 0, 3}, 40] (* Harvey P. Dale, Feb 13 2024 *)
|
|
PROG
|
(Magma) a135351:=func< n | (2^n+3-7*(-1)^n+3*0^n)/6 >; [ a135351(n): n in [0..32] ]; // Klaus Brockhaus, Dec 05 2009
(PARI) a(n) = (2^n + 3 - 7*(-1)^n + 3*0^n)/6; \\ Michel Marcus, Oct 11 2016
(Sage) [(2^n+3-7*(-1)^n+3*0^n)/6 for n in (0..40)] # G. C. Greubel, Sep 02 2019
(GAP) List([0..40], n-> (2^n+3-7*(-1)^n+3*0^n)/6); # G. C. Greubel, Sep 02 2019
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|