|
|
A219187
|
|
Sum of distinct prime divisors of Lucas(n).
|
|
2
|
|
|
2, 0, 3, 2, 7, 11, 5, 29, 47, 21, 44, 199, 32, 521, 284, 44, 2207, 3571, 112, 9349, 2168, 242, 353, 600, 1152, 263, 90484, 5800, 14510, 19548, 2567, 3010349, 5568, 10102, 63513, 1022, 103713, 54018521, 29134604, 1461, 4689, 370248451, 1796, 151190, 2118, 785
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
a(6) = 5 because Lucas(6) = 21 and the sum of the prime divisors {3, 7} equals 10.
|
|
MAPLE
|
with (numtheory):with(combinat, fibonacci):
sopf:= proc(n) local e, j; e := ifactors(fibonacci(n+1)+fibonacci(n-1))[2]:
add (e[j][1], j=1..nops(e)) end:
seq (sopf(n), n=0..100);
|
|
MATHEMATICA
|
Array[If[#==1, 0, Plus@@First/@FactorInteger[LucasL[ # ]]]&, 50, 0]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|