|
|
A008472
|
|
Sum of the distinct primes dividing n.
|
|
360
|
|
|
0, 2, 3, 2, 5, 5, 7, 2, 3, 7, 11, 5, 13, 9, 8, 2, 17, 5, 19, 7, 10, 13, 23, 5, 5, 15, 3, 9, 29, 10, 31, 2, 14, 19, 12, 5, 37, 21, 16, 7, 41, 12, 43, 13, 8, 25, 47, 5, 7, 7, 20, 15, 53, 5, 16, 9, 22, 31, 59, 10, 61, 33, 10, 2, 18, 16, 67, 19, 26, 14, 71, 5, 73
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Sometimes called sopf(n).
Sum of primes dividing n (without repetition) (compare A001414).
a(n) = n is a new record if and only if n is prime. - Zak Seidov, Jun 27 2009
a(n) + 2, n > 2, is the number of maximal subsemigroups of the monoid of orientation-preserving or -reversing mappings on a set with n elements.
a(n) + 3, n > 2, is the number of maximal subsemigroups of the monoid of orientation-preserving or -reversing partial mappings on a set with n elements.
(End)
The smallest m such that a(m) = n, or 0 if no such number m exists is A064502(n). The only integers that are not in the sequence are 1, 4 and 6. - Bernard Schott, Feb 07 2022
|
|
LINKS
|
|
|
FORMULA
|
Let n = Product_j prime(j)^k(j) where k(j)>=1, then a(n) = Sum_j prime(j).
Additive with a(p^e) = p.
L.g.f.: -log(Product_{k>=1} (1 - x^prime(k))) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 06 2017
For n > 0: a(A001020(n)) = 11, a(A001022(n)) = 13, a(A001026(n)) = 17, a(A001029(n)) = 19, a(A009967(n)) = 23, a(A009973(n)) = 29, a(A009975(n)) = 31, a(A009981(n)) = 37, a(A009985(n)) = 41, a(A009987(n)) = 43, a(A009991(n)) = 47.
For p odd prime, a(2*p) = p+2 <==> a(A100484(n)) = A052147(n) for n > 1. (End)
|
|
EXAMPLE
|
a(18) = 5 because 18 = 2 * 3^2 and 2 + 3 = 5.
a(19) = 19 because 19 is prime.
a(20) = 7 because 20 = 2^2 * 5 and 2 + 5 = 7.
|
|
MAPLE
|
A008472 := n -> add(d, d = select(isprime, numtheory[divisors](n))):
add( d, d= numtheory[factorset](n)) ;
|
|
MATHEMATICA
|
Prepend[Array[Plus @@ First[Transpose[FactorInteger[#]]] &, 100, 2], 0]
Join[{0}, Rest[Total[Transpose[FactorInteger[#]][[1]]]&/@Range[100]]] (* Harvey P. Dale, Jun 18 2012 *)
(* Requires version 7.0+ *) Table[DivisorSum[n, # &, PrimeQ[#] &], {n, 75}] (* Alonso del Arte, Dec 13 2014 *)
Table[Sum[p, {p, Select[Divisors[n], PrimeQ]}], {n, 1, 100}] (* Vaclav Kotesovec, May 20 2020 *)
|
|
PROG
|
(PARI) sopf(n) = local(fac=factor(n)); sum(i=1, matsize(fac)[1], fac[i, 1])
(PARI) vector(100, n, vecsum(factor(n)[, 1]~)) \\ Derek Orr, May 13 2015
(Sage)
return add(d for d in divisors(n) if is_prime(d))
(Haskell)
(Magma) [n eq 1 select 0 else &+[p[1]: p in Factorization(n)]: n in [1..100]]; // Vincenzo Librandi, Jun 24 2017
(Python)
from sympy import primefactors
|
|
CROSSREFS
|
Sum of the k-th powers of the primes dividing n for k=0..10 : A001221 (k=0), this sequence (k=1), A005063 (k=2), A005064 (k=3), A005065 (k=4), A351193 (k=5), A351194 (k=6), A351195 (k=7), this sequence (k=8), A351197 (k=9), A351198 (k=10).
|
|
KEYWORD
|
nonn,nice,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|