The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005063 Sum of squares of primes dividing n. 35
 0, 4, 9, 4, 25, 13, 49, 4, 9, 29, 121, 13, 169, 53, 34, 4, 289, 13, 361, 29, 58, 125, 529, 13, 25, 173, 9, 53, 841, 38, 961, 4, 130, 293, 74, 13, 1369, 365, 178, 29, 1681, 62, 1849, 125, 34, 533, 2209, 13, 49, 29, 298, 173, 2809, 13, 146, 53, 370, 845, 3481, 38, 3721 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The set of these terms apart from 0 is A048261. - Bernard Schott, Feb 10 2022 Inverse Möbius transform of n^2 * c(n), where c(n) is the prime characteristic (A010051). - Wesley Ivan Hurt, Jun 22 2024 LINKS Alois P. Heinz, Table of n, a(n) for n = 1..10000 FORMULA Additive with a(p^e) = p^2. G.f.: Sum_{k>=1} prime(k)^2*x^prime(k)/(1 - x^prime(k)). - Ilya Gutkovskiy, Dec 24 2016 From Antti Karttunen, Jul 11 2017: (Start) a(n) = A005066(n) + 4*A059841(n). a(n) = A005079(n) + A005083(n) + 4*A059841(n). a(n) = A005071(n) + A005075(n) + 9*A079978(n). (End) Dirichlet g.f.: primezeta(s-2)*zeta(s). - Benedict W. J. Irwin, Jul 11 2018 a(n) = Sum_{p|n, p prime} p^2. - Wesley Ivan Hurt, Feb 04 2022 a(n) = Sum_{d|n} d^2 * c(d), where c = A010051. - Wesley Ivan Hurt, Jun 22 2024 MAPLE A005063 := proc(n) add(d^2, d= numtheory[factorset](n)) ; end proc; seq(A005063(n), n=1..40) ; # R. J. Mathar, Nov 08 2011 MATHEMATICA a[n_] := Total[FactorInteger[n][[All, 1]]^2]; a[1]=0; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Mar 20 2017 *) Array[DivisorSum[#, #^2 &, PrimeQ] &, 61] (* Michael De Vlieger, Jul 11 2017 *) PROG (PARI) a(n)=local(fm, t); fm=factor(n); t=0; for(k=1, matsize(fm)[1], t+=fm[k, 1]^2); t \\ Franklin T. Adams-Watters, May 03 2009 (PARI) a(n) = vecsum(apply(x->x^2, factor(n)[, 1])); \\ Michel Marcus, Sep 19 2020 (Scheme) (define (A005063 n) (if (= 1 n) 0 (+ (A000290 (A020639 n)) (A005063 (A028234 n))))) ;; Antti Karttunen, Jul 10 2017 (Python) from sympy import primefactors def a(n): return sum(p**2 for p in primefactors(n)) print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jul 11 2017 CROSSREFS Cf. A000290, A005066, A005071, A005075, A005079, A005083, A059841, A079978. Cf. A067666, A081403, A048261. - Franklin T. Adams-Watters, May 03 2009 Sum of the k-th powers of the primes dividing n for k=0..10 : A001221 (k=0), A008472 (k=1), this sequence (k=2), A005064 (k=3), A005065 (k=4), A351193 (k=5), A351194 (k=6), A351195 (k=7), this sequence (k=8), A351197 (k=9), A351198 (k=10). Cf. A010051. Sequence in context: A210966 A300516 A178147 * A235323 A345304 A078615 Adjacent sequences: A005060 A005061 A005062 * A005064 A005065 A005066 KEYWORD nonn AUTHOR N. J. A. Sloane EXTENSIONS More terms from Franklin T. Adams-Watters, May 03 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 14 12:31 EDT 2024. Contains 375921 sequences. (Running on oeis4.)