|
|
A005063
|
|
Sum of squares of primes dividing n.
|
|
35
|
|
|
0, 4, 9, 4, 25, 13, 49, 4, 9, 29, 121, 13, 169, 53, 34, 4, 289, 13, 361, 29, 58, 125, 529, 13, 25, 173, 9, 53, 841, 38, 961, 4, 130, 293, 74, 13, 1369, 365, 178, 29, 1681, 62, 1849, 125, 34, 533, 2209, 13, 49, 29, 298, 173, 2809, 13, 146, 53, 370, 845, 3481, 38, 3721
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Inverse Möbius transform of n^2 * c(n), where c(n) is the prime characteristic (A010051). - Wesley Ivan Hurt, Jun 22 2024
|
|
LINKS
|
|
|
FORMULA
|
Additive with a(p^e) = p^2.
G.f.: Sum_{k>=1} prime(k)^2*x^prime(k)/(1 - x^prime(k)). - Ilya Gutkovskiy, Dec 24 2016
(End)
|
|
MAPLE
|
add(d^2, d= numtheory[factorset](n)) ;
end proc;
|
|
MATHEMATICA
|
a[n_] := Total[FactorInteger[n][[All, 1]]^2]; a[1]=0; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Mar 20 2017 *)
|
|
PROG
|
(PARI) a(n)=local(fm, t); fm=factor(n); t=0; for(k=1, matsize(fm)[1], t+=fm[k, 1]^2); t \\ Franklin T. Adams-Watters, May 03 2009
(PARI) a(n) = vecsum(apply(x->x^2, factor(n)[, 1])); \\ Michel Marcus, Sep 19 2020
(Python)
from sympy import primefactors
def a(n): return sum(p**2 for p in primefactors(n))
|
|
CROSSREFS
|
Sum of the k-th powers of the primes dividing n for k=0..10 : A001221 (k=0), A008472 (k=1), this sequence (k=2), A005064 (k=3), A005065 (k=4), A351193 (k=5), A351194 (k=6), A351195 (k=7), this sequence (k=8), A351197 (k=9), A351198 (k=10).
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|