login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A067666
Sum of squares of prime factors of n (counted with multiplicity).
12
0, 4, 9, 8, 25, 13, 49, 12, 18, 29, 121, 17, 169, 53, 34, 16, 289, 22, 361, 33, 58, 125, 529, 21, 50, 173, 27, 57, 841, 38, 961, 20, 130, 293, 74, 26, 1369, 365, 178, 37, 1681, 62, 1849, 129, 43, 533, 2209, 25, 98, 54, 298, 177, 2809, 31, 146, 61, 370, 845, 3481
OFFSET
1,2
COMMENTS
16 and 27 are fixed points, ... and see Rivera link. - Michel Marcus, Sep 19 2020
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Carlos Rivera, Puzzle 625. Sum of squares of prime divisors, The Prime Puzzles and Problems Connection.
Carlos Rivera, Puzzle 1019. Follow-up to Puzzle 625, The Prime Puzzles and Problems Connection.
FORMULA
a(x*y) = a(x) + a(y); a(p^k) = k*p^2 for p prime.
Totally additive with a(p) = p^2.
EXAMPLE
a(2) = 2^2 = 4;
a(45) = a(3*3*5) = 3^2 + 3^2 + 5^2 = 43.
MAPLE
A067666 := proc(n)
add(op(2, pe)*op(1, pe)^2, pe=ifactors(n)[2]) ;
end proc:
seq(A067666(n), n=1..100) ; # R. J. Mathar, Jul 31 2024
MATHEMATICA
Join[{0}, Table[Total[Flatten[Table[#[[1]], {#[[2]]}]&/@ FactorInteger[ n]]^2], {n, 2, 60}]] (* Harvey P. Dale, Dec 24 2012 *)
Join[{0}, Table[Total[#[[1]]^2*#[[2]] & /@ FactorInteger[n]], {n, 2, 60}]] (* Zak Seidov, Apr 18 2013 *)
PROG
(PARI) a(n)=local(fm, t); fm=factor(n); t=0; for(k=1, matsize(fm)[1], t+=fm[k, 1]^2*fm[k, 2]); t \\ Franklin T. Adams-Watters, May 03 2009
(PARI) a(n) = my(f=factor(n)); sum(k=1, #f~, f[k, 1]^2*f[k, 2]); \\ Michel Marcus, Sep 19 2020
CROSSREFS
Cf. A166319 (where a(n)<=n), A001222, A001414, A005063, A078137, A081403.
Sequence in context: A285109 A217579 A118585 * A355012 A280286 A268597
KEYWORD
nonn
AUTHOR
Henry Bottomley, Feb 04 2002
EXTENSIONS
Values through a(59) verified by Franklin T. Adams-Watters, May 03 2009
STATUS
approved