OFFSET
1,3
COMMENTS
Indices m where A067666(m) <= m. Apparently the equality only holds at m=16 and 27.
Members are highly smooth, i.e., they factor mostly into small prime numbers. What are the asymptotics of the largest prime factor of a(n)? - Ralf Stephan, Dec 23 2013
Equality A067666(m) = m also holds for 45*A*B where A = (C^107+D^107)/(C+D), B = (C^109+D^109)/(C+D), C = (sqrt(47)+sqrt(43))/2, D = (sqrt(47)-sqrt(43))/2. Maple confirms A and B are prime. - Michael R Peake, Apr 09 2020
LINKS
Wikipedia, Smooth number
EXAMPLE
24 = 2*2*2*3 >= 2^2 + 2^2 + 2^2 + 3^2 = 21, so 24 is in the sequence.
MAPLE
isA166319 := proc(n)
local ifa;
ifa := ifactors(n)[2] ;
return (n >= add( op(2, p)*op(1, p)^2, p=ifa)) ;
end proc:
for n from 0 to 1000 do
if isA166319(n) then
printf("%d, ", n);
end if;
end do: # R. J. Mathar, Nov 27 2015
MATHEMATICA
highlySmoothQ[n_] := (pp = Table[#[[1]], #[[2]]]& /@ FactorInteger[n] // Flatten; Times @@ pp >= pp.pp); Select[Range[0, 300], highlySmoothQ] (* Jean-François Alcover, Feb 02 2018 *)
PROG
(PARI) is(n)=f=factor(n); n>=sum(i=1, matsize(f)[1], f[i, 2]*f[i, 1]^2) \\ Ralf Stephan, Dec 23 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Claudio Meller, Oct 11 2009
EXTENSIONS
Edited by Ralf Stephan, Dec 23 2013
Replaced incorrect definition with alternative supplied by Ralf Stephan, Dec 23 2013 [N. J. A. Sloane, Nov 23 2015]
STATUS
approved