login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A166322
The number of times a point sum n is attained in all 7^6 permutations of throwing 7 dice.
2
1, 7, 28, 84, 210, 462, 917, 1667, 2807, 4417, 6538, 9142, 12117, 15267, 18327, 20993, 22967, 24017, 24017, 22967, 20993, 18327, 15267, 12117, 9142, 6538, 4417, 2807, 1667, 917, 462, 210, 84, 28, 7, 1
OFFSET
7,2
COMMENTS
The sum for any number of dice can be obtained by summing the trailing six terms of the sequence above - assuming leading zeros.
1 1 1 1 1 1
1 2 3 4 5 6 5 4 3 2 1
1 3 6 10 15 21 25 27 27 25 21 15 10 6 3 1
1 4 10 20 35 56 80 104 125 140 125 104 80 56 35 20 10 4 1
etc.
FORMULA
F_{s,i}(k)= sum(n=0, floor((k-i)/s), (-1)^n*binomial(n,i)*binomial(i-1,k-s*n-1)).
PROG
(PARI) Vec(((sum(k=1, 6, x^k))^7+O(x^66))) \\ Joerg Arndt, Mar 04 2013
CROSSREFS
A056150 gives sums for 3 dice.
A108907 gives sums for 6 dice.
A063260 gives the sums for 2 dice through to 6 dice.
Sequence in context: A073363 A247608 A341136 * A008499 A375163 A049018
KEYWORD
nonn,fini,full
AUTHOR
Robert Goodhand (robert(AT)rgoodhand.fsnet.co.uk), Oct 11 2009
STATUS
approved