login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247608
a(n) = Sum_{k=0..3} binomial(6,k)*binomial(n,k).
9
1, 7, 28, 84, 195, 381, 662, 1058, 1589, 2275, 3136, 4192, 5463, 6969, 8730, 10766, 13097, 15743, 18724, 22060, 25771, 29877, 34398, 39354, 44765, 50651, 57032, 63928, 71359, 79345, 87906, 97062, 106833, 117239, 128300, 140036, 152467, 165613, 179494
OFFSET
0,2
LINKS
C. Krattenthaler, Advanced determinant calculus Séminaire Lotharingien de Combinatoire, B42q (1999), 67 pp, (see p. 54).
FORMULA
G.f.: (1+3*x+6*x^2+10*x^3)/(1-x)^4.
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4).
a(n) = (6+31*n-15*n^2+20*n^3)/6.
a(n) = 1+6*Binomial(n,1)+15*Binomial(n,2)+20*Binomial(n,3).
MATHEMATICA
Table[(6 + 31 n - 15 n^2 + 20 n^3)/6, {n, 0, 50}] (* or *) CoefficientList[Series[(1 + 3 x + 6 x^2 + 10 x^3)/(1-x)^4, {x, 0, 50}], x]
PROG
(Magma) [(6+31*n-15*n^2+20*n^3)/6: n in [0..40]]; /* or */ [1+6*Binomial(n, 1)+15*Binomial(n, 2)+20*Binomial(n, 3): n in [0..40]]; /* or */ I:=[1, 7, 28, 84]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]
(PARI) Vec((1+3*x+6*x^2+10*x^3)/(1-x)^4 + O (x^50)) \\ Michel Marcus, Sep 22 2014
(Sage) m=3; [sum((binomial(2*m, k)*binomial(n, k)) for k in (0..m)) for n in (0..40)] # Bruno Berselli, Sep 22 2014
CROSSREFS
Sequence in context: A163705 A162595 A073363 * A341136 A166322 A008499
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Sep 22 2014
STATUS
approved