login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A056108
Fourth spoke of a hexagonal spiral.
38
1, 5, 15, 31, 53, 81, 115, 155, 201, 253, 311, 375, 445, 521, 603, 691, 785, 885, 991, 1103, 1221, 1345, 1475, 1611, 1753, 1901, 2055, 2215, 2381, 2553, 2731, 2915, 3105, 3301, 3503, 3711, 3925, 4145, 4371, 4603, 4841, 5085, 5335, 5591, 5853, 6121, 6395
OFFSET
0,2
COMMENTS
a(n) = sum of (n+1)-th row terms of triangle A134234. - Gary W. Adamson, Oct 14 2007
If Y is a 4-subset of an n-set X then, for n >= 4, a(n-4) is the number of 4-subsets of X having at least two elements in common with Y. - Milan Janjic, Dec 08 2007
Equals binomial transform of [1, 4, 6, 0, 0, 0, ...] - Gary W. Adamson, Apr 30 2008
From A.K. Devaraj, Sep 18 2009: (Start)
Let f(x) be a polynomial in x. Then f(x + n*f(x)) is congruent to 0 (mod(f(x)); here n belongs to N.
There is nothing interesting in the quotients f(x + n*f(x))/f(x) when x belongs to Z.
However, when x is irrational these quotients consist of two parts, a) rational integers and b) integer multiples of x.
The present sequence is the integer part when the polynomial is x^2 + x + 1 and x = sqrt(2),
f(x+n*f(x))/f(x) = a(n) + A005563(n)*sqrt(2).
Equals triangle A128229 as an infinite lower triangular matrix * A016777 as a vector, where A016777 = (3n+1).
(End)
Numbers of the form ((-h^2+h+1)^2+(h^2-h+1)^2+(h^2+h-1)^2)/(h^2+h+1) for h=n+1. - Bruno Berselli, Mar 13 2013
LINKS
Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
FORMULA
a(n) = 3*n^2 + n + 1.
a(n) = a(n-1) + 6*n - 2 = 2*a(n-1) - a(n-2) + 6
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A056105(n) + 3*n = A056106(n) + 2*n = A056107(n) + n = A056109(n) - n = A003215(n) - 2*n.
a(n) = A096777(3n+1) . - Reinhard Zumkeller, Dec 29 2007
a(n) = 6*n+a(n-1)-2 with n>0, a(0)=1. - Vincenzo Librandi, Aug 07 2010
G.f.: (1+2*x+3*x^2)/(1-3*x+3*x^2-x^3). - Colin Barker, Jan 04 2012
a(-n) = A056106(n). - Bruno Berselli, Mar 13 2013
E.g.f.: (3*x^2 + 4*x + 1)*exp(x). - G. C. Greubel, Jul 19 2017
MATHEMATICA
Table[3 n^2 + n + 1, {n, 0, 50}] (* Bruno Berselli, Mar 13 2013 *)
LinearRecurrence[{3, -3, 1}, {1, 5, 15}, 50] (* Harvey P. Dale, Dec 26 2023 *)
PROG
(Magma) [3*n^2+n+1: n in [0..50]]; // Bruno Berselli, Mar 13 2013
(PARI) a(n)=3*n^2+n+1 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Other spirals: A054552.
Sequence in context: A048021 A225325 A133268 * A055831 A346823 A037984
KEYWORD
easy,nonn
AUTHOR
Henry Bottomley, Jun 09 2000
STATUS
approved