login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055831
T(n,n-4), where T is the array in A055830.
4
5, 15, 31, 54, 85, 125, 175, 236, 309, 395, 495, 610, 741, 889, 1055, 1240, 1445, 1671, 1919, 2190, 2485, 2805, 3151, 3524, 3925, 4355, 4815, 5306, 5829, 6385, 6975, 7600, 8261, 8959, 9695, 10470, 11285, 12141, 13039
OFFSET
4,1
FORMULA
a(n) = (n-3)*(n^2+6*n-10)/6, n>3.
G.f.: x^4*(5-5*x+x^2)/(1-x)^4. - R. J. Mathar, Mar 13 2016
E.g.f.: (-30 - 6*x + 3*x^2 + (30 - 24*x + 6*x^2 + x^3)*exp(x))/6. - G. C. Greubel, Jan 21 2020
MAPLE
seq( (n-3)*(n^2+6*n-10)/6, n=4..40); # G. C. Greubel, Jan 21 2020
MATHEMATICA
Table[(n-3)*(n^2+6*n-10)/6, {n, 4, 40}] (* G. C. Greubel, Jan 21 2020 *)
PROG
(PARI) a(n) = (n-3)*(n^2+6*n-10)/6; \\ G. C. Greubel, Jan 21 2020
(Magma) [(n-3)*(n^2+6*n-10)/6: n in [4..40]]; // G. C. Greubel, Jan 21 2020
(Sage) [(n-3)*(n^2+6*n-10)/6 for n in (4..40)] # G. C. Greubel, Jan 21 2020
(GAP) List([4..40], n-> (n-3)*(n^2+6*n-10)/6); # G. C. Greubel, Jan 21 2020
CROSSREFS
Cf. A055830.
Sequence in context: A225325 A133268 A056108 * A346823 A037984 A298032
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 28 2000
STATUS
approved