login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,n-4), where T is the array in A055830.
4

%I #20 Sep 08 2022 08:45:01

%S 5,15,31,54,85,125,175,236,309,395,495,610,741,889,1055,1240,1445,

%T 1671,1919,2190,2485,2805,3151,3524,3925,4355,4815,5306,5829,6385,

%U 6975,7600,8261,8959,9695,10470,11285,12141,13039

%N T(n,n-4), where T is the array in A055830.

%H G. C. Greubel, <a href="/A055831/b055831.txt">Table of n, a(n) for n = 4..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).

%F a(n) = (n-3)*(n^2+6*n-10)/6, n>3.

%F G.f.: x^4*(5-5*x+x^2)/(1-x)^4. - _R. J. Mathar_, Mar 13 2016

%F E.g.f.: (-30 - 6*x + 3*x^2 + (30 - 24*x + 6*x^2 + x^3)*exp(x))/6. - _G. C. Greubel_, Jan 21 2020

%p seq( (n-3)*(n^2+6*n-10)/6, n=4..40); # _G. C. Greubel_, Jan 21 2020

%t Table[(n-3)*(n^2+6*n-10)/6, {n,4,40}] (* _G. C. Greubel_, Jan 21 2020 *)

%o (PARI) a(n) = (n-3)*(n^2+6*n-10)/6; \\ _G. C. Greubel_, Jan 21 2020

%o (Magma) [(n-3)*(n^2+6*n-10)/6: n in [4..40]]; // _G. C. Greubel_, Jan 21 2020

%o (Sage) [(n-3)*(n^2+6*n-10)/6 for n in (4..40)] # _G. C. Greubel_, Jan 21 2020

%o (GAP) List([4..40], n-> (n-3)*(n^2+6*n-10)/6); # _G. C. Greubel_, Jan 21 2020

%Y Cf. A055830.

%K nonn,easy

%O 4,1

%A _Clark Kimberling_, May 28 2000