login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A055833 T(n,n-6), where T is the array in A055830. 2
13, 58, 162, 361, 701, 1239, 2044, 3198, 4797, 6952, 9790, 13455, 18109, 23933, 31128, 39916, 50541, 63270, 78394, 96229, 117117, 141427, 169556, 201930, 239005, 281268, 329238, 383467, 444541, 513081 (list; graph; refs; listen; history; text; internal format)
OFFSET

6,1

LINKS

G. C. Greubel, Table of n, a(n) for n = 6..1000

Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).

FORMULA

From R. J. Mathar, Mar 13 2016: (Start)

G.f.: x^6*(13 -20*x +9*x^2 -x^3)/(1-x)^6.

a(n) = (n-5)*(n-4)*(n^3 +19*n^2 +6*n -156)/120. (End)

E.g.f.: (3120 + 1560*x + 180*x^2 - 20*x^3 - (3120 - 1560*x + 180*x^2 + 60*x^3 - 20*x^4 - x^5)*exp(x))/120. - G. C. Greubel, Jan 21 2020

MAPLE

seq( (n-5)*(n-4)*(n^3 +19*n^2 +6*n -156)/120, n=6..40); # G. C. Greubel, Jan 21 2020

MATHEMATICA

Table[(n-5)*(n-4)*(n^3 +19*n^2 +6*n -156)/120, {n, 6, 40}] (* G. C. Greubel, Jan 21 2020 *)

PROG

(PARI) a(n) = (n-5)*(n-4)*(n^3 +19*n^2 +6*n -156)/120; \\ G. C. Greubel, Jan 21 2020

(MAGMA) [(n-5)*(n-4)*(n^3 +19*n^2 +6*n -156)/120: n in [6..40]]; // G. C. Greubel, Jan 21 2020

(Sage) [(n-5)*(n-4)*(n^3 +19*n^2 +6*n -156)/120 for n in (6..40)] # G. C. Greubel, Jan 21 2020

(GAP) List([6..40], n-> (n-5)*(n-4)*(n^3 +19*n^2 +6*n -156)/120 ); # G. C. Greubel, Jan 21 2020

CROSSREFS

Cf. A055830.

Sequence in context: A147019 A230988 A183317 * A103220 A086221 A272386

Adjacent sequences:  A055830 A055831 A055832 * A055834 A055835 A055836

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, May 28 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 28 16:41 EDT 2021. Contains 348329 sequences. (Running on oeis4.)