login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A055833
T(n,n-6), where T is the array in A055830.
2
13, 58, 162, 361, 701, 1239, 2044, 3198, 4797, 6952, 9790, 13455, 18109, 23933, 31128, 39916, 50541, 63270, 78394, 96229, 117117, 141427, 169556, 201930, 239005, 281268, 329238, 383467, 444541, 513081
OFFSET
6,1
FORMULA
From R. J. Mathar, Mar 13 2016: (Start)
G.f.: x^6*(13 -20*x +9*x^2 -x^3)/(1-x)^6.
a(n) = (n-5)*(n-4)*(n^3 +19*n^2 +6*n -156)/120. (End)
E.g.f.: (3120 + 1560*x + 180*x^2 - 20*x^3 - (3120 - 1560*x + 180*x^2 + 60*x^3 - 20*x^4 - x^5)*exp(x))/120. - G. C. Greubel, Jan 21 2020
MAPLE
seq( (n-5)*(n-4)*(n^3 +19*n^2 +6*n -156)/120, n=6..40); # G. C. Greubel, Jan 21 2020
MATHEMATICA
Table[(n-5)*(n-4)*(n^3 +19*n^2 +6*n -156)/120, {n, 6, 40}] (* G. C. Greubel, Jan 21 2020 *)
PROG
(PARI) a(n) = (n-5)*(n-4)*(n^3 +19*n^2 +6*n -156)/120; \\ G. C. Greubel, Jan 21 2020
(Magma) [(n-5)*(n-4)*(n^3 +19*n^2 +6*n -156)/120: n in [6..40]]; // G. C. Greubel, Jan 21 2020
(Sage) [(n-5)*(n-4)*(n^3 +19*n^2 +6*n -156)/120 for n in (6..40)] # G. C. Greubel, Jan 21 2020
(GAP) List([6..40], n-> (n-5)*(n-4)*(n^3 +19*n^2 +6*n -156)/120 ); # G. C. Greubel, Jan 21 2020
CROSSREFS
Cf. A055830.
Sequence in context: A230988 A183317 A365749 * A103220 A086221 A272386
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 28 2000
STATUS
approved