OFFSET
6,1
LINKS
G. C. Greubel, Table of n, a(n) for n = 6..1000
Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
FORMULA
From R. J. Mathar, Mar 13 2016: (Start)
G.f.: x^6*(13 -20*x +9*x^2 -x^3)/(1-x)^6.
a(n) = (n-5)*(n-4)*(n^3 +19*n^2 +6*n -156)/120. (End)
E.g.f.: (3120 + 1560*x + 180*x^2 - 20*x^3 - (3120 - 1560*x + 180*x^2 + 60*x^3 - 20*x^4 - x^5)*exp(x))/120. - G. C. Greubel, Jan 21 2020
MAPLE
seq( (n-5)*(n-4)*(n^3 +19*n^2 +6*n -156)/120, n=6..40); # G. C. Greubel, Jan 21 2020
MATHEMATICA
Table[(n-5)*(n-4)*(n^3 +19*n^2 +6*n -156)/120, {n, 6, 40}] (* G. C. Greubel, Jan 21 2020 *)
PROG
(PARI) a(n) = (n-5)*(n-4)*(n^3 +19*n^2 +6*n -156)/120; \\ G. C. Greubel, Jan 21 2020
(Magma) [(n-5)*(n-4)*(n^3 +19*n^2 +6*n -156)/120: n in [6..40]]; // G. C. Greubel, Jan 21 2020
(Sage) [(n-5)*(n-4)*(n^3 +19*n^2 +6*n -156)/120 for n in (6..40)] # G. C. Greubel, Jan 21 2020
(GAP) List([6..40], n-> (n-5)*(n-4)*(n^3 +19*n^2 +6*n -156)/120 ); # G. C. Greubel, Jan 21 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 28 2000
STATUS
approved