login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272386
Smallest primes of 5 X 5 magic squares formed from consecutive primes.
7
13, 59, 79, 97, 107, 127, 157, 269, 337, 347, 439, 457, 479, 563, 601, 631, 719, 743, 883, 947, 1021, 1031, 1049, 1051, 1061, 1093, 1109, 1171, 1201, 1223, 1499, 1523, 1601, 1669, 1811, 1901, 1933, 1997, 2011, 2053, 2153, 2207, 2341, 2399, 2531, 2539, 2549, 2551
OFFSET
1,1
COMMENTS
A necessary condition for a prime being in this sequence is that the sum of this and the subsequent 24 primes divided by 5 must be an odd integer. - M. F. Hasler, Oct 30 2018
LINKS
Arkadiusz Wesolowski, Table of n, a(n) for n = 1..66
Eric Weisstein's World of Mathematics, Prime Magic Square
Arkadiusz Wesolowski, Examples of these magic squares
EXAMPLE
The smallest 5 X 5 magic square that can be formed from 25 consecutive primes consists of the primes 13 through 113, so the first term is 13:
n = 1
|----|----|----|----|----|
| 13 | 107| 73 | 101| 19 |
|----|----|----|----|----|
| 97 | 17 | 79 | 37 | 83 |
|----|----|----|----|----|
| 41 | 53 | 109| 43 | 67 |
|----|----|----|----|----|
| 103| 89 | 29 | 61 | 31 |
|----|----|----|----|----|
| 59 | 47 | 23 | 71 | 113|
|----|----|----|----|----|
The next smallest consists of the primes 59 through 179, so the second term is 59:
n = 2
|----|----|----|----|----|
| 59 | 163| 151| 137| 67 |
|----|----|----|----|----|
| 149| 61 | 79 | 109| 179|
|----|----|----|----|----|
| 113| 83 | 173| 107| 101|
|----|----|----|----|----|
| 167| 139| 71 | 127| 73 |
|----|----|----|----|----|
| 89 | 131| 103| 97 | 157|
|----|----|----|----|----|
PROG
(PARI) A272386(n)=MagicPrimes(A176571(n), 5)[1] \\ See A073519 for MagicPrimes(). - M. F. Hasler, Oct 28 2018
(PARI) is_candidate(p)={denominator(p=A173981(, p))==1 && bittest(p, 0)} \\ For p < 167, this yields exactly the terms of A272386. Exceptions (primes satisfying this but not in A272386) are (167, 227, 383, 461, 607, ...). - M. F. Hasler, Oct 30 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved