login
A163833
a(n) = n*(6*n^2 + 15*n + 5)/2.
1
0, 13, 59, 156, 322, 575, 933, 1414, 2036, 2817, 3775, 4928, 6294, 7891, 9737, 11850, 14248, 16949, 19971, 23332, 27050, 31143, 35629, 40526, 45852, 51625, 57863, 64584, 71806, 79547, 87825, 96658, 106064, 116061, 126667, 137900, 149778
OFFSET
0,2
FORMULA
Row sums from A162245: a(n) = Sum_{m=1..n} (6*m*n + 3*m + 3*n + 1).
G.f.: x*(13 + 7*x - 2*x^2)/(x-1)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
E.g.f.: (1/2)*x*(26 + 33*x + 6*x^2)*exp(x). - G. C. Greubel, Aug 05 2017
MATHEMATICA
CoefficientList[Series[-x*(-13-7*x+2*x^2)/(x-1)^4, {x, 0, 40}], x] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 13, 59, 156}, 50](* Vincenzo Librandi, Mar 06 2012 *)
PROG
(PARI) x='x+O('x^50); concat([0], Vec(x*(13 +7*x -2*x^2)/(x-1)^4)) \\ G. C. Greubel, Aug 05 2017
CROSSREFS
Cf. A162245.
Sequence in context: A272386 A171749 A141917 * A213567 A124864 A126400
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Aug 05 2009
EXTENSIONS
Edited by R. J. Mathar, Aug 05 2009
STATUS
approved